Solveeit Logo

Question

Mathematics Question on Functions

Consider the function.f(x)={a(7x12x2)b(x27x+12),x<3\[8pt]sin(x3)2xx,x>3\[8pt]b,x=3f(x) = \begin{cases} \frac{a(7x - 12 - x^2)}{b(x^2 - 7x + 12)} & , \quad x < 3 \\\[8pt] \frac{\sin(x - 3)}{2^{x - \lfloor x \rfloor}} & , \quad x > 3 \\\[8pt] b & , \quad x = 3 \end{cases}Where x\lfloor x \rfloordenotes the greatest integer less than or equal to xx. If SS denotes the set of all ordered pairs (a,b)(a, b) such that f(x)f(x) is continuous at x=3x = 3, then the number of elements in SS is:

A

2

B

Infinitely many

C

4

D

1

Answer

1

Explanation

Solution

Step 1. Continuity Condition at x=3x = 3: For f(x)f(x) to be continuous at x=3x = 3, we must have:

f(3)=f(3)=f(3+)f(3^-) = f(3) = f(3^+)

Step 2. Calculate f(3)f(3^-): For x<3x < 3,

f(x)=a(7x12x2)bx27x+12=a(x3)(x4)b(x3)(x4)=abf(x) = \frac{a(7x - 12 - x^2)}{b|x^2 - 7x + 12|} = \frac{-a(x - 3)(x - 4)}{b(x - 3)(x - 4)} = \frac{-a}{b}

So, f(3)=abf(3^-) = -\frac{a}{b}.

Step 3. Calculate f(3+)f(3^+): For x>3x > 3,

f(x)=sin(x3)2xxlimx3+f(x)=2f(x) = \frac{\sin(x - 3)}{2x - |x|} \Rightarrow \lim_{x \to 3^+} f(x) = 2

Step 4. Set Up Continuity Condition: Since f(3)=f(3)=f(3+)f(3^-) = f(3) = f(3^+),

ab=2andb=2a=4-\frac{a}{b} = 2 \quad \text{and} \quad b = 2 \Rightarrow a = -4

Therefore, the only solution is (a,b)=(4,2)(a, b) = (-4, 2).