Solveeit Logo

Question

Mathematics Question on Functions

Consider the function f:RRf : \mathbb{R} \to \mathbb{R} defined by f(x)=2x1+9x2.f(x) = \frac{2x}{\sqrt{1 + 9x^2}}. If the composition of ff, (ffff)(x)(10 times)=210x1+9αx2,(f \circ f \circ f \circ \dots \circ f)(x) \quad \text{(10 times)} = \frac{2^{10}x}{\sqrt{1 + 9\alpha x^2}}, then the value of 3α+1\sqrt{3\alpha + 1} is equal to \dots.

Answer

To determine the value of α\alpha, let’s analyze the repeated composition of f(x)f(x).

  1. Starting with f(x)=2x1+9x2f(x) = \frac{2x}{\sqrt{1 + 9x^2}}, we compute f(f(x))f(f(x)): f(f(x))=2f(x)1+9f(x)2=4x1+9x2+922x2=22x1+9(1+2)x2.f(f(x)) = \frac{2f(x)}{\sqrt{1 + 9f(x)^2}} = \frac{4x}{\sqrt{1 + 9x^2 + 9 \cdot 2^2 x^2}} = \frac{2^2 x}{\sqrt{1 + 9(1 + 2)x^2}}. This gives us α2=1+2\alpha_2 = 1 + 2 for the second composition.
  2. Repeating this process, we observe a pattern: after nn compositions, the denominator takes the form 1+9(1+2+22++2n1)x2.\sqrt{1 + 9(1 + 2 + 2^2 + \cdots + 2^{n-1})x^2}.
  3. The series 1+2+22++2n11 + 2 + 2^2 + \cdots + 2^{n-1} is a geometric series that sums to 2n12^n - 1. Therefore, after 10 compositions, we have: α=2101=1023.\alpha = 2^{10} - 1 = 1023.

Now, we calculate 3α+1\sqrt{3\alpha + 1}:

3α+1=31023+1=3072+1=3072=1024.\sqrt{3\alpha + 1} = \sqrt{3 \cdot 1023 + 1} = \sqrt{3072 + 1} = \sqrt{3072} = 1024.

Answer: 1024