Question
Question: Consider the function \[f\left( x \right)=\left| \sin x \right|+\left| \cos x \right|\] for \[0 < x ...
Consider the function f(x)=∣sinx∣+∣cosx∣ for 0<x<2π. Then
(a) f(x)is differentiable ∀x∈(0,2π)
(b) f(x)is not differentiable at x=2π,πand 23πand differentiable at all other values in (0,2π)
(c) f(x)is not differentiable at x=2πand 23πand differentiable at all other values in (0,2π)
(d) fis discontinuous at x=2π,πand 23π
Solution
Hint: A function is differentiable at x=a , if the left-hand derivative of the function is equal to the right-hand derivative of the function at x=a .
Complete step-by-step answer:
We know \left| \sin x \right|=\left\\{ \begin{aligned}
& \sin x,0\le x\le \pi \\\
& -\sin x,\pi \le x\le 2\pi \\\
\end{aligned} \right.
and \left| \cos x \right|=\left\\{ \begin{aligned}
& \cos x,\text{ }0\le x\le \dfrac{\pi }{2} \\\
& -\cos x,\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\\
& \cos x,\text{ }\dfrac{3\pi }{2}\le x\le 2\pi \\\
\end{aligned} \right.
So, we can rewrite the function as,