Solveeit Logo

Question

Mathematics Question on mathematical reasoning

Consider the following two statements : The value of sin120\sin \, 120^{\circ} can be derived by taking θ=240\theta =240^{\circ} in the equation 2sinθ2=1+sinθ1sinθ2 \sin \, \frac{\theta}{2} = \sqrt{1 + \sin \, \theta} - \sqrt{1 - \sin \, \theta}. The angles A, B, C and D of any quadrilateral ABCD satisfy the equation cos(12(A+C))+cos(12(B+D))=0\cos \left( \frac{1}{2} (A + C) \right) + \cos \left( \frac{1}{2} (B + D) \right) = 0 Then the truth values of p and q are respectively :

A

F, T

B

T, F

C

T, T

D

F, F

Answer

F, T

Explanation

Solution

Eor statement p θ=240\theta=240^{\circ}
2sin(2402)=1+sin2401sin2402 \sin \left(\frac{240^{\circ}}{2}\right) =\sqrt{1+\sin 240^{\circ}}-\sqrt{1-\sin 240^{\circ}}
2sin120=1321+322 \sin 120^{\circ} =\sqrt{1-\frac{\sqrt{3}}{2}}-\sqrt{1+\frac{\sqrt{3}}{2}}
232=42344+2342 \cdot \frac{\sqrt{3}}{2} =\sqrt{\frac{4-2 \sqrt{3}}{4}}-\sqrt{\frac{4+2 \sqrt{3}}{4}}
3=(31)24(3+1)24\sqrt{3} =\sqrt{\frac{(\sqrt{3}-1)^{2}}{4}}-\sqrt{\frac{(\sqrt{3}+1)^{2}}{4}}
3=3123+12\sqrt{3} =\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}+1}{2}
31\sqrt{3} \neq-1
Therefore, statement pp is false.
For statement q: cos(12(A+C))+cos(12(B+D))=0\cos \left(\frac{1}{2}(A+C)\right)+\cos \left(\frac{1}{2}(B+D)\right)=0
A+B+C+D=2πA+B+C+D=2 \pi
A+C2=π(B+D2)\Rightarrow \frac{A+C}{2}=\pi-\left(\frac{B+D}{2}\right)
cosA+C2+cosB+D2cos(πB+D2)+cos(B+D2)=0\cos \frac{A+C}{2}+\cos \frac{B+D}{2} \cos \left(\pi-\frac{B+D}{2}\right)+\cos \left(\frac{B+D}{2}\right)=0
Therefore, statement qq is true.