Question
Mathematics Question on mathematical reasoning
Consider the following two statements : The value of sin120∘ can be derived by taking θ=240∘ in the equation 2sin2θ=1+sinθ−1−sinθ. The angles A, B, C and D of any quadrilateral ABCD satisfy the equation cos(21(A+C))+cos(21(B+D))=0 Then the truth values of p and q are respectively :
A
F, T
B
T, F
C
T, T
D
F, F
Answer
F, T
Explanation
Solution
Eor statement p θ=240∘
2sin(2240∘)=1+sin240∘−1−sin240∘
2sin120∘=1−23−1+23
2⋅23=44−23−44+23
3=4(3−1)2−4(3+1)2
3=23−1−23+1
3=−1
Therefore, statement p is false.
For statement q: cos(21(A+C))+cos(21(B+D))=0
A+B+C+D=2π
⇒2A+C=π−(2B+D)
cos2A+C+cos2B+Dcos(π−2B+D)+cos(2B+D)=0
Therefore, statement q is true.