Solveeit Logo

Question

Mathematics Question on complex numbers

Consider the following two statements:
Statement I: For any two non-zero complex numbers z1,z2z_1, z_2,
(z1+z2)z1z1+z2z22(z1+z2)(|z_1| + |z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right| \leq 2 (|z_1| + |z_2|)
Statement II: If x,y,zx, y, z are three distinct complex numbers and a,b,ca, b, c are three positive real numbers such that
ayz=bzx=cxy,\frac{a}{|y - z|} = \frac{b}{|z - x|} = \frac{c}{|x - y|},
then
a2yz+b2zx+c2xy=1.\frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = 1.
Between the above two statements,

A

both Statement I and Statement II are incorrect.

B

Statement I is incorrect but Statement II is correct.

C

Statement I is correct but Statement II is incorrect.

D

both Statement I and Statement II are correct.

Answer

Statement I is correct but Statement II is incorrect.

Explanation

Solution

Statement I:

(z1+z2)z1z1+z2z22(z1+z2)\left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right)

Since

z1z1+z2z22\left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2

we have

(z1+z2)z1z1+z2z22(z1+z2)\left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right)

Thus, Statement I is correct.

Statement II: Given

ayz=bzx=cxy\frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert}

let

ayz=bzx=cxy=λ\frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} = \lambda

Then,

a2=λyz,b2=λzx,c2=λxya^2 = \lambda \lvert y - z \rvert, \quad b^2 = \lambda \lvert z - x \rvert, \quad c^2 = \lambda \lvert x - y \rvert

Substituting, we get:

a2yz+b2zx+c2xy=λ(yzyz+zxzx+xyxy)\frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = \lambda \left( \frac{y - z}{y - z} + \frac{z - x}{z - x} + \frac{x - y}{x - y} \right)
Thus, Statement II is false.