Solveeit Logo

Question

Mathematics Question on Statistics

Consider the following statements : PP : Ramu is intelligent Q:Q: Ramu is rich RR : Ramu is not honest The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as :

A

((P(R))Q)((Q)((P)R))(( P \wedge(\sim R )) \wedge Q ) \wedge((\sim Q ) \wedge((\sim P ) \vee R ))

B

((PR)Q)((Q)((P)(R)))(( P \wedge R ) \wedge Q ) \vee((\sim Q ) \wedge((\sim P ) \vee(\sim R )))

C

((PR)Q)((Q)((P)(R)))(( P \wedge R ) \wedge Q ) \wedge((\sim Q ) \wedge((\sim P ) \vee(\sim R )))

D

((P(R))Q)((Q)((P)R))(( P \wedge(\sim R )) \wedge Q ) \vee((\sim Q ) \wedge((\sim P ) \vee R ))

Answer

((P(R))Q)((Q)((P)R))(( P \wedge(\sim R )) \wedge Q ) \vee((\sim Q ) \wedge((\sim P ) \vee R ))

Explanation

Solution

Negation of (P∧∼R)↔(∼Q)
⇒((P∧∼R)∧Q)∨(∼Q∧∼(P∧∼R))
⇒((P∧∼R)∧Q)∨(∼Q∧(∼P∨R))
Answer D is correct