Solveeit Logo

Question

Question: Consider the following reversible reaction $A_{(g)} + B_{(g)} \rightleftharpoons AB_{(g)}$. The acti...

Consider the following reversible reaction A(g)+B(g)AB(g)A_{(g)} + B_{(g)} \rightleftharpoons AB_{(g)}. The activation energy of backward reaction exceeds than that of forward reaction by 2RT (in Joule mole1mole^{-1}). If the pre-exponential factor of the forward reaction is 4 times than that of reverse reaction, the value of ΔG\Delta G^{\circ} for the reaction at 300 K is Y×102-Y \times 10^2 Joule. The value of 'Y' is ______. [Take R = 8.3J/mol-K and ln2 = 0.693]

Answer

84

Explanation

Solution

Here's how to solve the problem:

  1. Arrhenius Equation:

    The forward and reverse rate constants are given by the Arrhenius equation:

    kf=AfeEa,f/RTk_f = A_f e^{-E_{a,f}/RT}

    kb=AbeEa,b/RTk_b = A_b e^{-E_{a,b}/RT}

  2. Equilibrium Constant:

    The equilibrium constant is:

    Keq=kfkb=AfAbe(Ea,bEa,f)/RTK_{eq} = \dfrac{k_f}{k_b} = \dfrac{A_f}{A_b} e^{(E_{a,b} - E_{a,f})/RT}

  3. Given Values:

    We are given:

    AfAb=4\dfrac{A_f}{A_b} = 4

    Ea,bEa,f=2RTE_{a,b} - E_{a,f} = 2RT

  4. Substitution:

    Substituting the given values:

    Keq=4e2RT/RT=4e2K_{eq} = 4 \, e^{2RT/RT} = 4e^2

  5. Gibbs Free Energy Change:

    The standard Gibbs free energy change is given by:

    ΔG=RTlnKeq\Delta G^\circ = -RT \ln K_{eq}

    Substitute Keq=4e2K_{eq} = 4e^2:

    ΔG=RT(ln4+2)\Delta G^\circ = -RT (\ln 4 + 2)

  6. Calculation:

    Given R=8.3J/mol\cdotpKR=8.3 \, \text{J/mol·K}, T=300KT=300\,K, and ln2=0.693\ln 2=0.693 (so ln4=2ln2=1.386\ln 4 = 2\ln2 = 1.386):

    RT=8.3×300=2490J/molRT = 8.3 \times 300 = 2490 \, \text{J/mol}

    Thus,

    ΔG=2490(1.386+2)=2490×3.3868430J/mol\Delta G^\circ = -2490 (1.386 + 2) = -2490 \times 3.386 \approx -8430 \, \text{J/mol}

  7. Final Answer:

    Expressed in the form Y×102-Y \times 10^2 Joule, we have:

    8430J/mol=84.3×102J/mol-8430 \, \text{J/mol} = -84.3 \times 10^2 \, \text{J/mol}

    Rounded off, Y84Y \approx 84.