Solveeit Logo

Question

Chemistry Question on Redox reactions

Consider the following redox reaction:MnO4+H++H2C2O4Mn2++H2O+CO2\text{MnO}_4^- + \text{H}^+ + \text{H}_2 \text{C}_2 \text{O}_4 \rightleftharpoons \text{Mn}^{2+} + \text{H}_2 \text{O} + \text{CO}_2The standard reduction potentials are given as below (Ered_\text{red}):E^\circ_{\text{MnO}_4^-/\text{Mn}^{2+}} = +1.51 \, \text{V}$$$$E^\circ_{\text{CO}_2/\text{H}_2 \text{C}_2 \text{O}_4} = -0.49 \, \text{V}If the equilibrium constant of the above reaction is given as Keq=10xK_\text{eq} = 10^x, then the value of (x = ________ ) (nearest integer).

Answer

Step-by-step Calculation:
The overall cell potential EcellE^\circ_{\text{cell}} for the redox reaction is calculated as:
Ecell=EcathodeEanodeE^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}
Here:
Ecathode=+1.51VE^\circ_{\text{cathode}} = +1.51 \, \text{V} (Reduction potential for MnO4\text{MnO}_4^-)
Eanode=0.49VE^\circ_{\text{anode}} = -0.49 \, \text{V} (Reduction potential for H2C2O4\text{H}_2\text{C}_2\text{O}_4)
Therefore:
Ecell=1.51(0.49)=2.00VE^\circ_{\text{cell}} = 1.51 - (-0.49) = 2.00 \, \text{V}
The equilibrium constant KeqK_\text{eq} is related to the cell potential by the Nernst equation:
ΔG=nFEcellandΔG=RTlnKeq\Delta G^\circ = -nF E^\circ_{\text{cell}} \quad \text{and} \quad \Delta G^\circ = -RT \ln K_\text{eq}
Equating the two expressions:
nFEcell=RTlnKeqnF E^\circ_{\text{cell}} = RT \ln K_\text{eq}
Rearranging to find KeqK_\text{eq}:
lnKeq=nFEcellRT\ln K_\text{eq} = \frac{nF E^\circ_{\text{cell}}}{RT}
Given:
n=5n = 5 (number of electrons transferred)
F=96500C mol1F = 96500 \, \text{C mol}^{-1}
R=8.314J K1mol1R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1}
T=298KT = 298 \, \text{K}
Ecell=2.00VE^\circ_{\text{cell}} = 2.00 \, \text{V}
Substituting the values:
lnKeq=5×96500×2.008.314×298\ln K_\text{eq} = \frac{5 \times 96500 \times 2.00}{8.314 \times 298}
lnKeq778.19\ln K_\text{eq} \approx 778.19
Converting to base 10:
log10Keq=lnKeqln10778.192.303337.78\log_{10} K_\text{eq} = \frac{\ln K_\text{eq}}{\ln 10} \approx \frac{778.19}{2.303} \approx 337.78
Rounding to the nearest integer:
x338x \approx 338
Conclusion: The value of xx is approximately 338 or 339.