Solveeit Logo

Question

Question: Consider the following reactions: $A \longrightarrow X, \ k_A = 10^{18}e^{-8000/T}$ $B \longrighta...

Consider the following reactions:

AX, kA=1018e8000/TA \longrightarrow X, \ k_A = 10^{18}e^{-8000/T}

BX, kB=1017e4000/TB \longrightarrow X, \ k_B = 10^{17}e^{-4000/T}

Find the temperature TT (in K) at which kA=kBk_A = k_B.

A

4000 K

B

8000 K

C

40002.303\frac{4000}{2.303} K

D

80002.303\frac{8000}{2.303} K

Answer

40002.303\frac{4000}{2.303} K

Explanation

Solution

To find the temperature TT at which kA=kBk_A = k_B, we set the two rate constants equal to each other:

1018e8000/T=1017e4000/T10^{18}e^{-8000/T} = 10^{17}e^{-4000/T}

Dividing both sides by 101710^{17} gives:

10e8000/T=e4000/T10e^{-8000/T} = e^{-4000/T}

Rearranging the terms:

10=e4000/Te8000/T=e(4000/T)(8000/T)=e4000/T10 = \frac{e^{-4000/T}}{e^{-8000/T}} = e^{(-4000/T) - (-8000/T)} = e^{4000/T}

Taking the natural logarithm of both sides:

ln(10)=4000T\ln(10) = \frac{4000}{T}

Since ln(10)2.303\ln(10) \approx 2.303:

2.303=4000T2.303 = \frac{4000}{T}

Solving for TT:

T=40002.303T = \frac{4000}{2.303} K