Solveeit Logo

Question

Mathematics Question on Relations and functions

Consider the following lists. List-IList-II
(A)$f(x) = \frac{
(B)$(x)=
(C)$h(x) =
(D)f(x)=12sin3x,x[Rf(x) = \frac{1}{2 - \sin 3x} , x \in [R
(V)
A

(A)-(V), (B)-(III) , (C)-(II), (D)-(I)

B

(A)-(III), (B)-(II) , (C)-(IV), (D)-(I)

C

(A)-(V), (B)-(III) , (C)-(IV), (D)-(I)

D

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

Answer

(A)-(V), (B)-(III) , (C)-(IV), (D)-(I)

Explanation

Solution

f(x)=x+2x+2,x2f(x)=\frac{|x+2|}{x+2}, x \neq-2

So, range of f(x)f(x) is 1,1\\{-1,1\\}.
(B) g(x)=[x],xR\because g(x)=|[x]|, x \in R
As [x]I[x]W[x] \in I \Rightarrow|[x]| \in W
So, range of g(x)g(x) is WW.
(C) h(x)=x[x],xR=x[0,1)\because h(x)=|x-[x]|, x \in R=|\\{x\\}| \in[0,1)
[x=x[x][\because\\{x\\}=x-[x] and x[0,1)]\\{x\\} \in[0,1)]
So, range of h(x)h(x) is [0,1)[0,1).
(D) f(x)=12sin3x,xR\because f(x)=\frac{1}{2-\sin 3 x}, x \in R
1sin3x1,xR\because -1 \leq \sin 3 x \leq 1, \forall x \in R
1sin3x1\Rightarrow -1 \leq-\sin 3 x \leq 1
212sin3x2+1\Rightarrow 2-1 \leq 2-\sin 3 x \leq 2+1
1312sin3x11\Rightarrow \frac{1}{3} \leq \frac{1}{2-\sin 3 x} \leq \frac{1}{1}
So, range of f(x) is [13,1]f(x) \text { is }\left[\frac{1}{3}, 1\right]