Question
Mathematics Question on Relations and functions
Consider the following lists. List-I | List-II |
---|---|
(A) | $f(x) = \frac{ |
(B) | $(x)= |
(C) | $h(x) = |
(D) | f(x)=2−sin3x1,x∈[R |
(V) |
A
(A)-(V), (B)-(III) , (C)-(II), (D)-(I)
B
(A)-(III), (B)-(II) , (C)-(IV), (D)-(I)
C
(A)-(V), (B)-(III) , (C)-(IV), (D)-(I)
D
(A)-(I), (B)-(II), (C)-(III), (D)-(IV)
Answer
(A)-(V), (B)-(III) , (C)-(IV), (D)-(I)
Explanation
Solution
f(x)=x+2∣x+2∣,x=−2
So, range of f(x) is −1,1.
(B) ∵g(x)=∣[x]∣,x∈R
As [x]∈I⇒∣[x]∣∈W
So, range of g(x) is W.
(C) ∵h(x)=∣x−[x]∣,x∈R=∣x∣∈[0,1)
[∵x=x−[x] and x∈[0,1)]
So, range of h(x) is [0,1).
(D) ∵f(x)=2−sin3x1,x∈R
∵−1≤sin3x≤1,∀x∈R
⇒−1≤−sin3x≤1
⇒2−1≤2−sin3x≤2+1
⇒31≤2−sin3x1≤11
So, range of f(x) is [31,1]