Question
Question: Consider the following function, \(y={{\left( \tan x \right)}^{\cot x}}+{{\left( \cot x \right)}^{\t...
Consider the following function, y=(tanx)cotx+(cotx)tanx. Prove that dxdy=(tanx)cotx.csc2x(1−logtanx)+(cotx)tanx.sec2x(log(cotx)−1)
Solution
We solve this question by first dividing y into two parts and assuming them as f(x) and g(x) then differentiating y. Then we find the value of f′(x) by first applying logarithm to f(x) and then differentiating the function with respective to x. then we use the formulas for chain rule, dxdf(g(x))=f′(g(x))×g′(x) and product rule, dxd[f(x)g(x)]=f′(x)g(x)+f(x)g′(x) and simplify it using the formulas, dxdlogx=x1, dxdtanx=sec2x and dxdcotx=−csc2x. Then by substituting the value of f(x), we can find the value of f′(x). Then we consider the function g(x) and by following the same method we can find the value of g′(x). Then we substitute the values of f′(x) and g′(x) to find the value of dxdy.
Complete step by step answer:
Let us consider the given equation y=(tanx)cotx+(cotx)tanx.
Let us assume that f(x)=(tanx)cotx and g(x)=(cotx)tanx
So, now let us differentiate the given equation with respective to x. then we get,
⇒dxdy=f′(x)+g′(x)...........(1)
So, first let us consider f(x)=(tanx)cotx and find the value of f′(x).
⇒f(x)=(tanx)cotx
Now let us apply logarithm to the above function. Then we get,
⇒logf(x)=log(tanx)cotx
Now let us consider the property logxa=alogx.
Using this we can write the above equation as,
⇒logf(x)=cotx.log(tanx)
Now let us differentiate it with respective to x. Then we get,
⇒dxd(logf(x))=dxd(cotx.log(tanx))..........(2)
Let us consider the formula,
dxdlogx=x1
Now let us consider the formula for chain rule,
dxdf(g(x))=f′(g(x))×g′(x)
Using these formulas, we can write the left-hand side of the equation (2) as,
⇒dxd(logf(x))=f(x)1×f′(x).............(3)
Let us consider the formula for the product rule,
dxd[f(x)g(x)]=f′(x)g(x)+f(x)g′(x)
Now let us also consider the formulas,
dxdtanx=sec2xdxdcotx=−csc2x
Let us consider the formula,
dxdlogx=x1
Now let us consider the formula for chain rule,
dxdf(g(x))=f′(g(x))×g′(x)
Using this we can write the right-hand side of the equation (2) as,
⇒dxd(cotx.log(tanx))=dxd(cotx).log(tanx)+cotx.dxd(log(tanx))⇒dxd(cotx.log(tanx))=−csc2x.log(tanx)+cotx.[tanx1.sec2x]⇒dxd(cotx.log(tanx))=−csc2x.log(tanx)+cot2x.sec2x
⇒dxd(cotx.log(tanx))=−csc2x.log(tanx)+sin2xcos2x.sec2x⇒dxd(cotx.log(tanx))=−csc2x.log(tanx)+csc2x⇒dxd(cotx.log(tanx))=csc2x(1−log(tanx))...............(4)
Substituting the equations (3) and (4) in equation (2), we get
⇒f(x)1×f′(x)=csc2x(1−log(tanx))⇒f′(x)=f(x)×csc2x(1−log(tanx))
Now let us substitute the value of f(x)=(tanx)cotx in it. Then we get,
⇒f′(x)=(tanx)cotx.csc2x(1−log(tanx)).........(5)
Now let us consider the second function, g(x)=(cotx)tanx.
⇒g(x)=(cotx)tanx
Now let us apply logarithm to the above function. Then we get,
⇒logg(x)=log(cotx)tanx
Now let us consider the property logxa=alogx.
Using this we can write the above equation as,
⇒logg(x)=tanx.log(cotx)
Now let us differentiate it with respective to x. Then we get,
⇒dxd(logg(x))=dxd(tanx.log(cotx))..........(6)
Let us consider the formula,
dxdlogx=x1
Now let us consider the formula for chain rule,
dxdf(g(x))=f′(g(x))×g′(x)
Using these formulas, we can write the left-hand side of the equation (6) as,
⇒dxd(logg(x))=g(x)1×g′(x).............(7)
Let us consider the formula for the product rule,
dxd[f(x)g(x)]=f′(x)g(x)+f(x)g′(x)
Now let us also consider the formulas,
dxdtanx=sec2xdxdcotx=−csc2x
Let us consider the formula,
dxdlogx=x1
Now let us consider the formula for chain rule,
dxdf(g(x))=f′(g(x))×g′(x)
Using this we can write the right-hand side of the equation (2) as,
⇒dxd(tanx.log(cotx))=dxd(tanx).log(cotx)+tanx.dxd(log(cotx))⇒dxd(tanx.log(cotx))=sec2x.log(cotx)+tanx.[cotx1.(−csc2x)]⇒dxd(tanx.log(cotx))=sec2x.log(cotx)−tan2x.csc2x