Solveeit Logo

Question

Question: Consider the following function, \(y={{\left( \tan x \right)}^{\cot x}}+{{\left( \cot x \right)}^{\t...

Consider the following function, y=(tanx)cotx+(cotx)tanxy={{\left( \tan x \right)}^{\cot x}}+{{\left( \cot x \right)}^{\tan x}}. Prove that dydx=(tanx)cotx.csc2x(1logtanx)+(cotx)tanx.sec2x(log(cotx)1)\dfrac{dy}{dx}={{\left( \tan x \right)}^{\cot x}}.{{\csc }^{2}}x\left( 1-\log \tan x \right)+{{\left( \cot x \right)}^{\tan x}}.{{\sec }^{2}}x\left( \log \left( \cot x \right)-1 \right)

Explanation

Solution

We solve this question by first dividing y into two parts and assuming them as f(x)f\left( x \right) and g(x)g\left( x \right) then differentiating yy. Then we find the value of f(x){f}'\left( x \right) by first applying logarithm to f(x)f\left( x \right) and then differentiating the function with respective to x. then we use the formulas for chain rule, ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right) and product rule, ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) and simplify it using the formulas, ddxlogx=1x\dfrac{d}{dx}\log x=\dfrac{1}{x}, ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x and ddxcotx=csc2x\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x. Then by substituting the value of f(x)f\left( x \right), we can find the value of f(x){f}'\left( x \right). Then we consider the function g(x)g\left( x \right) and by following the same method we can find the value of g(x){g}'\left( x \right). Then we substitute the values of f(x){f}'\left( x \right) and g(x){g}'\left( x \right) to find the value of dydx\dfrac{dy}{dx}.

Complete step by step answer:
Let us consider the given equation y=(tanx)cotx+(cotx)tanxy={{\left( \tan x \right)}^{\cot x}}+{{\left( \cot x \right)}^{\tan x}}.
Let us assume that f(x)=(tanx)cotxf\left( x \right)={{\left( \tan x \right)}^{\cot x}} and g(x)=(cotx)tanxg\left( x \right)={{\left( \cot x \right)}^{\tan x}}
So, now let us differentiate the given equation with respective to x. then we get,
dydx=f(x)+g(x)...........(1)\Rightarrow \dfrac{dy}{dx}={f}'\left( x \right)+{g}'\left( x \right)...........\left( 1 \right)

So, first let us consider f(x)=(tanx)cotxf\left( x \right)={{\left( \tan x \right)}^{\cot x}} and find the value of f(x){f}'\left( x \right).
f(x)=(tanx)cotx\Rightarrow f\left( x \right)={{\left( \tan x \right)}^{\cot x}}
Now let us apply logarithm to the above function. Then we get,
logf(x)=log(tanx)cotx\Rightarrow \log f\left( x \right)=\log {{\left( \tan x \right)}^{\cot x}}
Now let us consider the property logxa=alogx\log {{x}^{a}}=a\log x.
Using this we can write the above equation as,
logf(x)=cotx.log(tanx)\Rightarrow \log f\left( x \right)=\cot x.\log \left( \tan x \right)
Now let us differentiate it with respective to x. Then we get,
ddx(logf(x))=ddx(cotx.log(tanx))..........(2)\Rightarrow \dfrac{d}{dx}\left( \log f\left( x \right) \right)=\dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)..........\left( 2 \right)
Let us consider the formula,
ddxlogx=1x\dfrac{d}{dx}\log x=\dfrac{1}{x}
Now let us consider the formula for chain rule,
ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)
Using these formulas, we can write the left-hand side of the equation (2) as,
ddx(logf(x))=1f(x)×f(x).............(3)\Rightarrow \dfrac{d}{dx}\left( \log f\left( x \right) \right)=\dfrac{1}{f\left( x \right)}\times {f}'\left( x \right).............\left( 3 \right)

Let us consider the formula for the product rule,
ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)
Now let us also consider the formulas,
ddxtanx=sec2x ddxcotx=csc2x \begin{aligned} & \dfrac{d}{dx}\tan x={{\sec }^{2}}x \\\ & \dfrac{d}{dx}\cot x=-{{\csc }^{2}}x \\\ \end{aligned}
Let us consider the formula,
ddxlogx=1x\dfrac{d}{dx}\log x=\dfrac{1}{x}
Now let us consider the formula for chain rule,
ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)

Using this we can write the right-hand side of the equation (2) as,
ddx(cotx.log(tanx))=ddx(cotx).log(tanx)+cotx.ddx(log(tanx)) ddx(cotx.log(tanx))=csc2x.log(tanx)+cotx.[1tanx.sec2x] ddx(cotx.log(tanx))=csc2x.log(tanx)+cot2x.sec2x \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)=\dfrac{d}{dx}\left( \cot x \right).\log \left( \tan x \right)+\cot x.\dfrac{d}{dx}\left( \log \left( \tan x \right) \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)=-{{\csc }^{2}}x.\log \left( \tan x \right)+\cot x.\left[ \dfrac{1}{\tan x}.{{\sec }^{2}}x \right] \\\ & \Rightarrow \dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)=-{{\csc }^{2}}x.\log \left( \tan x \right)+{{\cot }^{2}}x.{{\sec }^{2}}x \\\ \end{aligned}
ddx(cotx.log(tanx))=csc2x.log(tanx)+cos2xsin2x.sec2x ddx(cotx.log(tanx))=csc2x.log(tanx)+csc2x ddx(cotx.log(tanx))=csc2x(1log(tanx))...............(4) \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)=-{{\csc }^{2}}x.\log \left( \tan x \right)+\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}.{{\sec }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)=-{{\csc }^{2}}x.\log \left( \tan x \right)+{{\csc }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( \cot x.\log \left( \tan x \right) \right)={{\csc }^{2}}x\left( 1-\log \left( \tan x \right) \right)...............\left( 4 \right) \\\ \end{aligned}
Substituting the equations (3) and (4) in equation (2), we get
1f(x)×f(x)=csc2x(1log(tanx)) f(x)=f(x)×csc2x(1log(tanx)) \begin{aligned} & \Rightarrow \dfrac{1}{f\left( x \right)}\times {f}'\left( x \right)={{\csc }^{2}}x\left( 1-\log \left( \tan x \right) \right) \\\ & \Rightarrow {f}'\left( x \right)=f\left( x \right)\times {{\csc }^{2}}x\left( 1-\log \left( \tan x \right) \right) \\\ \end{aligned}
Now let us substitute the value of f(x)=(tanx)cotxf\left( x \right)={{\left( \tan x \right)}^{\cot x}} in it. Then we get,
f(x)=(tanx)cotx.csc2x(1log(tanx)).........(5)\Rightarrow {f}'\left( x \right)={{\left( \tan x \right)}^{\cot x}}.{{\csc }^{2}}x\left( 1-\log \left( \tan x \right) \right).........\left( 5 \right)

Now let us consider the second function, g(x)=(cotx)tanxg\left( x \right)={{\left( \cot x \right)}^{\tan x}}.
g(x)=(cotx)tanx\Rightarrow g\left( x \right)={{\left( \cot x \right)}^{\tan x}}
Now let us apply logarithm to the above function. Then we get,
logg(x)=log(cotx)tanx\Rightarrow \log g\left( x \right)=\log {{\left( \cot x \right)}^{\tan x}}
Now let us consider the property logxa=alogx\log {{x}^{a}}=a\log x.
Using this we can write the above equation as,
logg(x)=tanx.log(cotx)\Rightarrow \log g\left( x \right)=\tan x.\log \left( \cot x \right)
Now let us differentiate it with respective to x. Then we get,
ddx(logg(x))=ddx(tanx.log(cotx))..........(6)\Rightarrow \dfrac{d}{dx}\left( \log g\left( x \right) \right)=\dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)..........\left( 6 \right)
Let us consider the formula,
ddxlogx=1x\dfrac{d}{dx}\log x=\dfrac{1}{x}
Now let us consider the formula for chain rule,
ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)
Using these formulas, we can write the left-hand side of the equation (6) as,
ddx(logg(x))=1g(x)×g(x).............(7)\Rightarrow \dfrac{d}{dx}\left( \log g\left( x \right) \right)=\dfrac{1}{g\left( x \right)}\times {g}'\left( x \right).............\left( 7 \right)

Let us consider the formula for the product rule,
ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)
Now let us also consider the formulas,
ddxtanx=sec2x ddxcotx=csc2x \begin{aligned} & \dfrac{d}{dx}\tan x={{\sec }^{2}}x \\\ & \dfrac{d}{dx}\cot x=-{{\csc }^{2}}x \\\ \end{aligned}
Let us consider the formula,
ddxlogx=1x\dfrac{d}{dx}\log x=\dfrac{1}{x}
Now let us consider the formula for chain rule,
ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)

Using this we can write the right-hand side of the equation (2) as,
ddx(tanx.log(cotx))=ddx(tanx).log(cotx)+tanx.ddx(log(cotx)) ddx(tanx.log(cotx))=sec2x.log(cotx)+tanx.[1cotx.(csc2x)] ddx(tanx.log(cotx))=sec2x.log(cotx)tan2x.csc2x \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)=\dfrac{d}{dx}\left( \tan x \right).\log \left( \cot x \right)+\tan x.\dfrac{d}{dx}\left( \log \left( \cot x \right) \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)={{\sec }^{2}}x.\log \left( \cot x \right)+\tan x.\left[ \dfrac{1}{\cot x}.\left( -{{\csc }^{2}}x \right) \right] \\\ & \Rightarrow \dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)={{\sec }^{2}}x.\log \left( \cot x \right)-{{\tan }^{2}}x.{{\csc }^{2}}x \\\ \end{aligned}

& \Rightarrow \dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)={{\sec }^{2}}x.\log \left( \cot x \right)-\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}.{{\csc }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)={{\sec }^{2}}x.\log \left( \cot x \right)-{{\sec }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( \tan x.\log \left( \cot x \right) \right)={{\sec }^{2}}x\left( \log \left( \cot x \right)-1 \right)...............\left( 8 \right) \\\ \end{aligned}$$ Substituting the equations (7) and (8) in equation (6), we get $\begin{aligned} & \Rightarrow \dfrac{1}{g\left( x \right)}\times {g}'\left( x \right)={{\sec }^{2}}x\left( \log \left( \cot x \right)-1 \right) \\\ & \Rightarrow {g}'\left( x \right)=g\left( x \right)\times {{\sec }^{2}}x\left( \log \left( \cot x \right)-1 \right) \\\ \end{aligned}$ Now let us substitute the value of $g\left( x \right)={{\left( \cot x \right)}^{\tan x}}$ in it. Then we get, $\Rightarrow {g}'\left( x \right)={{\left( \cot x \right)}^{\tan x}}.{{\sec }^{2}}x\left( \log \left( \cot x \right)-1 \right).........\left( 9 \right)$ Now let us substitute the equations (5) and (9) in equation (1). Then we get, $\begin{aligned} & \Rightarrow \dfrac{dy}{dx}={f}'\left( x \right)+{g}'\left( x \right) \\\ & \Rightarrow \dfrac{dy}{dx}={{\left( \tan x \right)}^{\cot x}}.{{\csc }^{2}}x\left( 1-\log \tan x \right)+{{\left( \cot x \right)}^{\tan x}}.{{\sec }^{2}}x\left( \log \left( \cot x \right)-1 \right) \\\ \end{aligned}$ Hence Proved. **Note:** The most commonly made mistake in this type of questions is one might take the formula for differentiation of the trigonometric identity $\cot x$ wrongly without taking the negative sign as, $\dfrac{d}{dx}\cot x={{\csc }^{2}}x$.