Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

Consider the following first-order gas phase reaction at constant temperature A(g)2B(g)+C(g)\text{A(g)} \rightarrow 2\text{B(g)} + \text{C(g)} If the total pressure of the gases is found to be 200 torr after 23 sec. and 300 torr upon the complete decomposition of A\text{A} after a very long time, then the rate constant of the given reaction is ×102s1\dots \dots \times 10^{-2} \, \text{s}^{-1} (nearest integer). [Given: log10(2)=0.301]\text{[Given: } \log_{10}(2) = 0.301 \text{]}

Answer

The reaction is: A(g)2B(g)+C(g)\text{A(g)} \rightarrow 2\text{B(g)} + \text{C(g)}
Given:
P23=P0+2x=200 P=3P0=300 P0=100P_{23} = P_0 + 2x = 200 \\\ P_\infty = 3P_0 = 300 \\\ P_0 = 100
The rate constant KK is calculated using:
K=1tlnPP0PPtK = \frac{1}{t} \ln \frac{P_\infty - P_0}{P_\infty - P_t}
Substituting the values:
K=2.323log300100300200K = \frac{2.3}{23} \log \frac{300 - 100}{300 - 200} K=2.3×0.30123=0.0301=3.01×102s1K = \frac{2.3 \times 0.301}{23} = 0.0301 = 3.01 \times 10^{-2} \, \text{s}^{-1}
The correct answer is (3).

Explanation

Solution

The reaction is: A(g)2B(g)+C(g)\text{A(g)} \rightarrow 2\text{B(g)} + \text{C(g)}
Given:
P23=P0+2x=200 P=3P0=300 P0=100P_{23} = P_0 + 2x = 200 \\\ P_\infty = 3P_0 = 300 \\\ P_0 = 100
The rate constant KK is calculated using:
K=1tlnPP0PPtK = \frac{1}{t} \ln \frac{P_\infty - P_0}{P_\infty - P_t}
Substituting the values:
K=2.323log300100300200K = \frac{2.3}{23} \log \frac{300 - 100}{300 - 200} K=2.3×0.30123=0.0301=3.01×102s1K = \frac{2.3 \times 0.301}{23} = 0.0301 = 3.01 \times 10^{-2} \, \text{s}^{-1}
The correct answer is (3).