Question
Question: Consider the following expression and solve it accordingly: \[\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfra...
Consider the following expression and solve it accordingly:
2.51+5.81+8.111+...........(3n−1).(3n+2)1
Solution
First consider the given expression as some function or represent by a particular notation. Then calculate the value of the given expression in both left hand side and right hand side for n=1. Now assume the total sum S(n)by some expressionn(k). Then we have to prove that the given expression also holds good for n=k+1.
Complete step by step answer:
Let S(n)=2.51+5.81+8.111+...........(3n−1).(3n+2)1
Step-1
Prove S(n)for n=1
L.H.S==2.51+5.81+8.111+...........(3(1)−1).(3(1)+2)1
=2.51+5.81+8.111+...........2.51
L. H. S=2.51=101. . . . . . . . . . . . . . . . . . . . (1)
R. H. S=2.51=101. . . . . . . . . . . . . . . . . . . . (2)
So the given expression is true for n=1.
Step-2
Assume that S(n)is true for some n(k)
2.51+5.81+8.111+...........(3k−1).(3k+2)1=6k+4k. . . . . . . . . . . . . . . . . . (3)
Step-3
Prove S(n)for n=k+1
L. H. S=2.51+5.81+8.111+...........(3(k+1)−1).(3(k+1)+2)1
=2(3k+2)k+(3k+2).(3k+5)1. . . . . . . . . . . . . . . . . . . . . . . (4)