Question
Question: Consider the following \(\displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{n!}{{{\left( kn \right)...
Consider the following \displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{n!}{{{\left( kn \right)}^{n}}} \right\\}}^{\dfrac{1}{n}}}, k=0, what is it equal to?
(a) ek
(b) ke
(c) ke1
(d) None of these
Solution
Use the formula n!=n(n−1)(n−2)......1 and take n common from all the terms and write it in the exponential form. Cancel the common term nn from the numerator and the denominator. Now, take natural log both the sides and use the formula logam=mloga to simplify. Also, apply the formula log(nm)=logm−logn to break the terms. Convert the given sum of infinite terms into a summation series of the form n→∞limr=1∑n−1n1f(nr). Now, in the next step convert this expression of limit into a definite integral by replacing (nr) with x and n1 with dx. The upper and lower limits of the integral will be found by substituting r = n – 1 and r = 1 in the expression n→∞lim(nr) respectively and simplifying. Finally, use the formula ∫log(ax+b)dx=a1(ax+b)(log(ax+b)−1) to evaluate the integral and substitute the limits to get the answer.
Here we have been asked to find the value of the expression \displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{n!}{{{\left( kn \right)}^{n}}} \right\\}}^{\dfrac{1}{n}}} where k=0.
Complete step by step answer:
Now, we need to convert the expression of limit into a definite integral to solve the question. Let us assume the expression as I.
\Rightarrow I=\displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{n!}{{{\left( kn \right)}^{n}}} \right\\}}^{\dfrac{1}{n}}}
Using the formula n!=n(n−1)(n−2)......1 we get,
\Rightarrow I=\displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)......1}{{{\left( kn \right)}^{n}}} \right\\}}^{\dfrac{1}{n}}}
Since there are n terms in the numerator of the limit so taking n common from each term we get,
\Rightarrow I=\displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{{{n}^{n}}\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)\left( 1-\dfrac{3}{n} \right)......\dfrac{1}{n}}{{{\left( kn \right)}^{n}}} \right\\}}^{\dfrac{1}{n}}}
Cancelling the common factor and simplifying the numerator in a more specific pattern we get,
\Rightarrow I=\displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)\left( 1-\dfrac{3}{n} \right)......\left( 1-\dfrac{\left( n-1 \right)}{n} \right)}{{{k}^{n}}} \right\\}}^{\dfrac{1}{n}}}
Taking natural log, i.e. log to the base e on both the sides and using the formula logam=mloga we get,
\begin{aligned}
& \Rightarrow \log I=\log \left[ \displaystyle \lim_{n \to \infty }{{\left\\{ \dfrac{\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)\left( 1-\dfrac{3}{n} \right)......\left( 1-\dfrac{\left( n-1 \right)}{n} \right)}{{{k}^{n}}} \right\\}}^{\dfrac{1}{n}}} \right] \\\
& \Rightarrow \log I=\displaystyle \lim_{n \to \infty }\left[ \log {{\left\\{ \dfrac{\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)\left( 1-\dfrac{3}{n} \right)......\left( 1-\dfrac{\left( n-1 \right)}{n} \right)}{{{k}^{n}}} \right\\}}^{\dfrac{1}{n}}} \right] \\\
& \Rightarrow \log I=\displaystyle \lim_{n \to \infty }\left[ \dfrac{1}{n}\log \left\\{ \dfrac{\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)\left( 1-\dfrac{3}{n} \right)......\left( 1-\dfrac{\left( n-1 \right)}{n} \right)}{{{k}^{n}}} \right\\} \right] \\\
\end{aligned}
Further using the formula log(nm)=logm−logn we can break the terms of logarithm, so we get,