Solveeit Logo

Question

Mathematics Question on Differential equations

Consider the family of all circles whose centers lie on the straight line y=xy = x. If this family of circles is represented by the differential equation Py"+Qy+1=0Py" + Qy' + 1 = 0, where PP, QQ are functions of x,yx, y and yy' (here y=dydx,y=d2ydx2y' = \frac{dy}{dx}, \,y'' = \frac{d^{2}y}{dx^{2}}), then which of the following statements is (are) true ?

A

P=y+xP = y + x

B

P=yxP = y - x

C

P+Q=1x+y+y+(y)2P + Q = 1 - x + y + y' + (y')^2

D

PQ=x+yy(y)2P - Q = x + y - y' - (y')^2

Answer

P+Q=1x+y+y+(y)2P + Q = 1 - x + y + y' + (y')^2

Explanation

Solution

Let the equation of circle is
(xa)2+(ya)2=r2\left(x - a\right)^{2 }+ \left(y - a\right)^{2} = r^{2}
?x2+y22ax2ay+2a2r2=0? x^{2} + y^{2 }- 2\, a\, x - 2\, a \,y + 2\, a^{ 2} - r^{2} = 0
differentiate w.r.t. x
?2x+2yy2a2ay=0? 2x + 2yy' - 2 \,a - 2\, a\, y' = 0
α=x+yy1+y...(i)\Rightarrow \alpha = \frac{x+yy'}{1+y'}\quad\quad...\left(i\right)
differentiate again w.r.t. x
2+2(y)2+2yy2ay=02 + 2\left(y'\right)^{2} + 2yy - 2 \,a\, y = 0
α=1+(y)2+yyy...(ii)\Rightarrow \alpha = \frac{1+\left(y'\right)^{2}+yy''}{y''}\quad\quad...\left(ii\right)
from (i)&(ii)\left(i\right) \& \left(ii\right)
xy+yyy=1+(y)2+yy+y+(y)3+yyyxy + yy'y = 1 + \left(y'\right)^{2} + yy + y' + \left(y'\right)^{3} + yy'y''
?(yx)y+y[y+1+(y)2]+1=0? \left(y - x\right) y + y' \left[y' + 1 + \left(y'\right)^{2}\right] + 1 = 0
P=yxP = y - x
Q=y+1+(y)2Q = y' + 1 + \left(y'\right)^{2}