Solveeit Logo

Question

Mathematics Question on Ellipse

Consider the ellipse
x24+y23=1\frac{x^2}{4} + \frac{y^2}{3} = 1.
Let H(α,0),0<α<2H (α, 0), 0 < α < 2 , be a point. A straight line drawn through H parallel to y-axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangents to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ\phi with the positive x-axis.

List-IList-II
(I)If Φ=π4\Phi = \frac{\pi}{4}, then the area of the triangle FGH is
(II)If Φ=π3\Phi = \frac{\pi}{3}, then the area of the triangle FGH is
(III)If Φ=π6\Phi = \frac{\pi}{6}, then the area of the triangle FGH is
(IV)If Φ=π12\Phi = \frac{\pi}{12}, then the area of the triangle FGH is
T
A

(I) → (R); (II) → (S); (III) → (Q); (IV) → (P)

B

(I) → (R); (II) → (T); (III) → (S); (IV) → (P)

C

(I) → (Q); (II) → (T); (III) → (S); (IV) → (P)

D

(I) → (Q); (II) → (S); (III) → (Q); (IV) → (P)

Answer

(I) → (Q); (II) → (T); (III) → (S); (IV) → (P)

Explanation

Solution

Equation of auxiliary circle x2+y2=4x^2 + y^2 = 4
Let F be (2cosθ,2sinθ)(2 cos \theta, 2 sin \theta)
E is (2cosθ,3sinθ)( 2cos\theta , \sqrt{3} sin \theta)
Equation of auxiliary circle
Equation of tangent at E xcosθ2+ysinθ3=1x \cos{\frac{\theta}{2}}+ y \sin{\frac{\theta}{\sqrt{3}}}=1
It cuts x-axis at (2secθ,0)(2 sec \theta, 0)
therefore G is (2secθ,0)(2 sec \theta, 0)
H is (2cosθ,0)(2 cos \theta, 0) and F(2cosθ,2sinθ)(2 cos \theta, 2 sin \theta)
Area of FGH\triangle FGH is 12×2sinθ(2secθ2cosθ)\frac{1}{2}\times2sin\theta(2 sec\theta-2cos\theta)
=2sinθ(secθcosθ)=2 sin\theta(sec\theta-cos\theta)

(I)f(π4)=1(I) \quad f\left(\frac{\pi}{4}\right)=1
(II)f(π3)=332(II) \quad f\left(\frac{\pi}{3}\right)=\frac{3\sqrt{3}}{2}

(III)f(π6)=123(III) \quad f\left(\frac{\pi}{6}\right)=\frac{1}{2\sqrt{3}}

(IV)f(π12)=2(23)(3122)2=(423)(31)28=(31)48(IV) \quad f\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2=\frac{(4-2\sqrt{3})(\sqrt{3}-1)^2}{8}=\frac{(\sqrt{3}-1)^4}{8}

(I)(Q);(II)(T);(III)(S);(IV)(P)(I) → (Q); (II) → (T); (III) → (S); (IV) → (P)