Solveeit Logo

Question

Mathematics Question on Differential equations

Consider the differential equation y2dx+(x1y)dy=0y^{2}dx +\left(x-\frac{1}{y}\right) dy = 0. If y(1)=1y \left(1\right) = 1, then x is given by :

A

42ye1ye4-\frac{2}{y}-\frac{e^{\frac{1}{y}}}{e}

B

32y+e1ye3-\frac{2}{y}+\frac{e^{\frac{1}{y}}}{e}

C

1+1ye1ye1+\frac{1}{y}-\frac{e^{\frac{1}{y}}}{e}

D

12y+e1ye1-\frac{2}{y}+\frac{e^{\frac{1}{y}}}{e}

Answer

1+1ye1ye1+\frac{1}{y}-\frac{e^{\frac{1}{y}}}{e}

Explanation

Solution

dxdy+xy2=1y3\frac{dx}{dy} + \frac{x}{y^{2}} = \frac{1}{y^{3}} I.F=e1y2dy=e1yI.F = e^{\int\frac{1}{y^{2}}dy} = e ^{\frac{1}{y}} sox.e1y=1y3e1ydy\quad\quad x . e ^{-\frac{1}{y}} = \int\frac{1}{y^{3}}e^{ -\frac{1}{y}}dy Let 1y=t\quad\quad \frac{-1}{y} = t 1y2dy=dt\Rightarrow\quad\quad \frac{1}{y^{2}}dy = dt I=tetdt=ettet\Rightarrow\quad\quad I = \int te^{t}dt = e^{t} - te^{t} =e1y+1ye1y+c= e^{-\frac{1}{y}}+\frac{1}{y} e ^{-\frac{1}{y}} + c xe1y=e1y+1ye1y+c\Rightarrow\quad\quad xe^{-\frac{1}{y}} = e ^{-\frac{1}{y}} + \frac{1}{y}e ^{-\frac{1}{y}} + c x=1+1y+c.e1/y\Rightarrow\quad\quad x = 1 + \frac{1}{y} + c.e ^{1/y} since y(1)=1y \left(1\right) = 1 c=1e\therefore\quad\quad c = -\frac{1}{e} x=1+1y1e.e1/y\Rightarrow\quad\quad x = 1 +\frac{1}{y} - \frac{1}{e }. e^{1/y}