Solveeit Logo

Question

Question: Consider the differential equation, \({{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0.\) If the value ...

Consider the differential equation, y2dx+(x1y)dy=0.{{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0. If the value of yy is 1 when x=1x=1, then the value of xx for which y=2y=2, is?

Explanation

Solution

We start solving this problem by converting the given differential equation into the form dxdy+x.P(y)=Q(y)\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right) . Then we find the integrating factor of the differential equation by using the formula eP(y)dy{{e}^{\int{P\left( y \right)dy}}} . Then we solve the differential equation by using the formula x.eP(y)dy=Q(y).eP(y)dydy+Cx.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C . Then we use the formula f(x)g(x)dx=f(x)g(x)dxf(x)(g(x)dx)dx\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx . Then we get the solution of the given integral. We Substitute x=1x=1 and y=1y=1 to get the value of the constant term in the solution. Then we substitute y=2y=2 in the final equation to get the value of xx.

Complete step by step answer:
Let us consider the given differential equation,
y2dx+(x1y)dy=0{{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0
Now, we divide the above differential equation by dydy on both sides. Then we get,
y2dxdy+(x1y)dydy=0dy y2dxdy+(x1y)=0 y2dxdy+x=1y \begin{aligned} & {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)\dfrac{dy}{dy}=\dfrac{0}{dy} \\\ & \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)=0 \\\ & \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+x=\dfrac{1}{y} \\\ \end{aligned}
Now, let us divide the above differential equation by y2{{y}^{2}} on both the sides, we get,
dxdy+xy2=1y3\dfrac{dx}{dy}+\dfrac{x}{{{y}^{2}}}=\dfrac{1}{{{y}^{3}}}
By comparing the above differential equation with dxdy+x.P(y)=Q(y)\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right) , we get, P(y)=1y2P\left( y \right)=\dfrac{1}{{{y}^{2}}} and Q(y)=1y3Q\left( y \right)=\dfrac{1}{{{y}^{3}}}.
Now, let us consider the formula of integrating factor, eP(y)dy{{e}^{\int{P\left( y \right)dy}}}
By using the above formula, we find the integrating factor. Then we get,
eP(y)dy =e1y2dy =e1y \begin{aligned} & {{e}^{\int{P\left( y \right)dy}}} \\\ & ={{e}^{\int{\dfrac{1}{{{y}^{2}}}dy}}} \\\ & ={{e}^{\dfrac{-1}{y}}} \\\ \end{aligned}
So, the integrating factor is e1y{{e}^{\dfrac{-1}{y}}}.
Now, let us consider the formula for the solution of a differential equation of the form dxdy+x.P(y)=Q(y)\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right) , that is, x.eP(y)dy=Q(y).eP(y)dydy+Cx.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C
By using the above formula, we get,

& x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C \\\ & x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\\ \end{aligned}$$ Let us consider $t=\dfrac{-1}{y}$ . By differentiating on both the sides gives us $dt=\dfrac{-1}{{{y}^{2}}}dy$ So, we get, $$\begin{aligned} & x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\\ & x.{{e}^{\dfrac{-1}{y}}}=\int{-t.{{e}^{t}}dt}+C \\\ & x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\\ \end{aligned}$$ Now, let us consider the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$. While applying this formula we need to select the functions $f\left( x \right)$ using a rule called as ILATE rule, that is we need to select the function $f\left( x \right)$in the order Inverse, Logarithm, Algebraic, Trigonometric and Exponential and $g\left( x \right)$ will be the other one. We have two terms in our integral $t$ and ${{e}^{t}}$, let us the ILATE rule for choosing which of them is $f$ and which is $g$. We can see that algebraic function occurs before exponential function. So, we select $f\left( x \right)$ and $g\left( x \right)$ as $f\left( t \right)=t$ and $g\left( t \right)={{e}^{t}}$. By using the above formula, we get, $$\begin{aligned} & x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\\ & x.{{e}^{\dfrac{-1}{y}}}=-\left[ t\int{{{e}^{t}}dt}-\int{\left( \dfrac{d}{dt}t \right)\left( \int{{{e}^{t}}dt} \right)dt} \right]+C \\\ & x.{{e}^{\dfrac{-1}{y}}}=-t{{e}^{t}}+\int{1.{{e}^{t}}dt}+C \\\ & x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\\ \end{aligned}$$ Now let us convert $t$ into $\dfrac{-1}{y}$. Then we get, $$\begin{aligned} & x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\\ & x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\\ \end{aligned}$$ Now, let us substitute $x=1$ and $y=1$ in the equation (1), we get, $$\begin{aligned} & x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\\ & 1.{{e}^{-1}}=2{{e}^{-1}}+C \\\ & C=2{{e}^{-1}}-{{e}^{-1}} \\\ & C={{e}^{-1}} \\\ & C=\dfrac{1}{e} \\\ \end{aligned}$$ So, we get the equation as $$x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+\dfrac{1}{e}$$ Now, let us substitute $y=2$ in the equation (1), we get, $$\begin{aligned} & x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( 1+\dfrac{1}{2} \right)+\dfrac{1}{e} \\\ & x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+\dfrac{1}{e} \\\ & x=\dfrac{{{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+{{e}^{-1}}}{{{e}^{\dfrac{-1}{2}}}} \\\ & x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}} \\\ \end{aligned}$$ **Hence, the answer is $$x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}$$** **Note:** The possibilities for making mistakes in this type of problems are, one may make a mistake by considering the formula of integral of product of two functions $f\left( x \right)$ and $g\left( x \right)$ as $\int{f\left( x \right)g\left( x \right)dx=}\left( \int{f\left( x \right)dx} \right)\left( \int{g\left( x \right)dx} \right)$.