Solveeit Logo

Question

Question: Consider the curve $x=y^4-5y^2+4$. It represents following two explicit functions: $$f:\left[-\frac{...

Consider the curve x=y45y2+4x=y^4-5y^2+4. It represents following two explicit functions: f:[94,4][0,52];y=f(x)f:\left[-\frac{9}{4},4\right]\rightarrow\left[0,\sqrt{\frac{5}{2}}\right];y=f(x) g:[94,)[52,);y=g(x)g:\left[-\frac{9}{4},\infty\right)\rightarrow\left[\sqrt{\frac{5}{2}},\infty\right);y=g(x) Let A1A_1 be area bounded by y=f(x)y=f(x) & xy=0xy=0 as x varies from 0 to 4. A2A_2 be area bounded by y=g(x),x216x+63=0y=g(x), x^2-16x+63=0 & y=0y=0. A3A_3 be the area bounded by tangent to the curve y=f(x)y=f(x) at P(2,2)P(-2, \sqrt{2}) and co-ordinate axes. On the basis of above information answer the following:

A

3815\frac{38}{15}

B

3615\frac{36}{15}

C

8815\frac{88}{15}

D

3

Answer

A1A_1 is equal to :-

Explanation

Solution

The area A1A_1 is bounded by y=f(x)y=f(x), x=0x=0, y=0y=0, and x=4x=4. We can calculate this area by integrating xx with respect to yy from y=0y=0 to y=1y=1. The equation of the curve is x=y45y2+4x = y^4 - 5y^2 + 4. A1=01(y45y2+4)dyA_1 = \int_{0}^{1} (y^4 - 5y^2 + 4) \, dy A1=[y555y33+4y]01A_1 = \left[ \frac{y^5}{5} - \frac{5y^3}{3} + 4y \right]_{0}^{1} A1=1553+4=325+6015=3815A_1 = \frac{1}{5} - \frac{5}{3} + 4 = \frac{3 - 25 + 60}{15} = \frac{38}{15}