Solveeit Logo

Question

Question: Consider the condition xy<1, then find the value of \({{\tan }^{-1}}x+{{\tan }^{-1}}y\)...

Consider the condition xy<1, then find the value of tan1x+tan1y{{\tan }^{-1}}x+{{\tan }^{-1}}y

Explanation

Solution

Hint: Use the trigonometric identity related to tan that is tan(x+y)=tanx+tany1tanxtany\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y} . Assume tan1x=A{{\tan }^{-1}}x=A, similarly with other values and apply the subsequent formula.

Let tan1x=A{{\tan }^{-1}}x=A
Multiplying with ‘tan’ on both sides, we get
tan(tan1x)=tanAtan\left( {{\tan }^{-1}}x \right)=\tan A
We know tan,tan1\tan ,{{\tan }^{-1}} gets cancelled, so we get
x=tanA.........(i)x=\tan A.........(i)
Now similarly, let tan1y=B{{\tan }^{-1}}y=B
Multiplying with ‘tan’ on both sides, we get
tan(tan1y)=tanBtan\left( {{\tan }^{-1}}y \right)=\tan B
We know tan,tan1\tan ,{{\tan }^{-1}} gets cancelled, so we get
y=tanB.........(ii)y=\tan B.........(ii)
Now we know, as per the trigonometric identity, tan(x+y)=tanx+tany1tanxtany\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}, so we can write,
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
Now substituting the values from equation (i) and (ii), we get
tan(A+B)=x+y1xy\tan (A+B)=\dfrac{x+y}{1-xy}
Now for this to be true, we know that denominator should be greater than 1, so we can write as
1 – xy > 0
Adding ‘xy’ on both sides, we get
1 – xy + xy > xy
Cancelling the like terms, we get
1 > xy
So, tan(A+B)=x+y1xy\tan (A+B)=\dfrac{x+y}{1-xy} is true only when xy < 1.
Now we will multiply the above expression with tan1{{\tan }^{-1}} , we get
tan1(tan(A+B))=tan1(x+y1xy)ta{{n}^{-1}}\left( \tan (A+B) \right)=ta{{n}^{-1}}\left( \dfrac{x+y}{1-xy} \right)
We know tan,tan1\tan ,{{\tan }^{-1}} gets cancelled, so we get
A+B=tan1(x+y1xy)A+B=ta{{n}^{-1}}\left( \dfrac{x+y}{1-xy} \right)
Substituting the value of A and B from what we have assume in starting, we get
tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y=ta{{n}^{-1}}\left( \dfrac{x+y}{1-xy} \right)
This is the required answer.

Note: One more approach to solve this is by contradiction. That is we know the formula tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y=ta{{n}^{-1}}\left( \dfrac{x+y}{1-xy} \right), considering this and proving that here xy < 1.