Solveeit Logo

Question

Question: Consider the condition, \(\sec \theta -\tan \theta =5\), then find the value of \(\theta \) ....

Consider the condition, secθtanθ=5\sec \theta -\tan \theta =5, then find the value of θ\theta .

Explanation

Solution

Hint: Factorize sec2θtan2θ{{\sec }^{2}}\theta -{{\tan }^{2}}\theta by using an algebraic identity given as a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) . Now, replace sec2θtan2θ{{\sec }^{2}}\theta -{{\tan }^{2}}\theta by 1 using relation sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 in one side and put value of secθtanθ\sec \theta -\tan \theta to other side as given in the question. Now, get the value of secθ+tanθ\sec \theta +\tan \theta and solve both the equations of secθtanθ\sec \theta -\tan \theta and secθ+tanθ\sec \theta +\tan \theta to get the value of θ\theta .

“Complete step-by-step answer:”
Here, we have
secθtanθ=5...............(i)\sec \theta -\tan \theta =5...............\left( i \right)
So, we need to determine the value of ‘θ\theta ‘ from the given relation of the equation (i).
As we know trigonometric identity related with secθ\sec \theta and tanθ\tan \theta can be given as sec2θtan2θ=1.{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1. And we know identity of (a2b2)\left( {{a}^{2}}-{{b}^{2}} \right) in algebraic equations can be given as (a - b) (a + b). If we compare sec2θtan2θ{{\sec }^{2}}\theta -{{\tan }^{2}}\theta with a2b2{{a}^{2}}-{{b}^{2}} , then we can factorize sec2θtan2θ{{\sec }^{2}}\theta -{{\tan }^{2}}\theta by relation a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) as,
sec2θtan2θ=(secθtanθ)(secθ+tanθ).........(ii){{\sec }^{2}}\theta -{{\tan }^{2}}\theta =\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right).........\left( ii \right)
Now, we can put value of secθtanθ\sec \theta -\tan \theta as ‘5’ from the question (equation(i)) and replace sec2θtan2θ{{\sec }^{2}}\theta -{{\tan }^{2}}\theta by 1 using the above mentioned identity as sec2θtan2θ=1.{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1. Hence, we can re-write the equation (ii) as
1=(secθ+tanθ)51=\left( \sec \theta +\tan \theta \right)5
secθ+tanθ=15.................(iii)\Rightarrow \sec \theta +\tan \theta =\dfrac{1}{5}.................\left( iii \right)
Now, we can add equation (i) and (iii) to get the value of ‘θ\theta ’. Hence, on adding equation (i) and (iii); we get
(secθtanθ)+(secθ+tanθ)=51+15 secθtanθ+secθ+tanθ=25+15 2secθ=265 \begin{aligned} & \left( \sec \theta -\tan \theta \right)+\left( \sec \theta +\tan \theta \right)=\dfrac{5}{1}+\dfrac{1}{5} \\\ & \sec \theta -\tan \theta +\sec \theta +\tan\theta =\dfrac{25+1}{5} \\\ & 2\sec \theta =\dfrac{26}{5} \\\ \end{aligned}
secθ=265×2=135 secθ=135 \begin{aligned} & \Rightarrow \sec \theta =\dfrac{26}{5\times 2}=\dfrac{13}{5} \\\ & \Rightarrow \sec \theta =\dfrac{13}{5} \\\ \end{aligned}
We can convert secθ\sec \theta to cosθ\cos \theta by using the relation cosθ=1secθ\cos \theta =\dfrac{1}{\sec \theta }
Now, put the value of secθ\sec \theta in the above relation to get the value of θ\theta in cos\cos form. Hence, we get
cosθ=1(135)=513 cosθ=513 \begin{aligned} & \cos \theta =\dfrac{1}{\left( \dfrac{13}{5} \right)}=\dfrac{5}{13} \\\ & \cos \theta =\dfrac{5}{13} \\\ \end{aligned}
θ=cos1(513)\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{5}{13} \right)
This is the required value.

Note: Another approach to solve the given question would be that we can find the value of θ\theta by using the relations secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } . Hence, we can get equation as
1cosθsinθcosθ=5\dfrac{1}{\cos \theta }-\dfrac{\sin \theta }{\cos \theta }=5
1sinθ=5cosθ1-\sin \theta =5\cos \theta
Now, square both sides and replace cos2θ{{\cos }^{2}}\theta by 1sin2θ1-{{\sin }^{2}}\theta using relation sin2θ+cos2θ=1.{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. Hence, we get
1+sin2θ2sinθ=25(1sin2θ)1+{{\sin }^{2}}\theta -2\sin \theta =25\left( 1-{{\sin }^{2}}\theta \right)
26sin2θ2sinθ24=026{{\sin }^{2}}\theta -2\sin \theta -24=0
13sin2θsinθ12=013{{\sin }^{2}}\theta -\sin \theta -12=0
Now, solve the quadratic and hence get the value of sinθ\sin \theta and further change sinθ\sin \theta to cosθ\cos \theta as well to get the same answer as in the solution.
One can get confused with the relation sin2θtan2θ=1{{\sin }^{2}}\theta -{{\tan }^{2}}\theta =1 . He or she may use sec2θ+tan2θ=1{{\sec }^{2}}\theta +{{\tan }^{2}}\theta =1 which is wrong. So, be clear with the trigonometric identities. And writing sec2θtan2θ{{\sec }^{2}}\theta -{{\tan }^{2}}\theta to (secθtanθ)(secθ+tanθ)\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right) using identity a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) is the key point of the question and solution.