Solveeit Logo

Question

Question: Consider the chemical reaction, 2A (g) \(\longrightarrow\)B(g) + 3C(g) The rate of this reaction c...

Consider the chemical reaction,

2A (g) \longrightarrowB(g) + 3C(g)

The rate of this reaction can be expressed in terms of time derivatives of conc. of A(g) , B(g) or C(g). Identify the correct relationship amongst rate expressions :

A

Rate = – d[A]dt=d[B]dt=d[C]dt\frac{d\lbrack A\rbrack}{dt} = \frac{d\lbrack B\rbrack}{dt} = \frac{d\lbrack C\rbrack}{dt}

B

Rate =12d[A]dt=d[B]dt=13d[C]dt\frac{1}{2}\frac{d\lbrack A\rbrack}{dt} = \frac{d\lbrack B\rbrack}{dt} = \frac{1}{3}\frac{d\lbrack C\rbrack}{dt}

C

Rate = –12d[A]dt=d[B]dt=13d[C]dt\frac{1}{2}\frac{d\lbrack A\rbrack}{dt} = \frac{d\lbrack B\rbrack}{dt} = \frac{1}{3}\frac{d\lbrack C\rbrack}{dt}

D

Rate = 12d[A]dt=d[B]dt=13d[C]dt\frac{1}{2}\frac{d\lbrack A\rbrack}{dt} = - \frac{d\lbrack B\rbrack}{dt} = - \frac{1}{3}\frac{d\lbrack C\rbrack}{dt}

Answer

Rate = –12d[A]dt=d[B]dt=13d[C]dt\frac{1}{2}\frac{d\lbrack A\rbrack}{dt} = \frac{d\lbrack B\rbrack}{dt} = \frac{1}{3}\frac{d\lbrack C\rbrack}{dt}

Explanation

Solution

2A [g] \longrightarrow B[g] + 3C[g] [elementary reaction]

Rate = – 12d[A]dt=d[B]dt=13d[C]dt\frac{1}{2}\frac{d\lbrack A\rbrack}{dt} = \frac{d\lbrack B\rbrack}{dt} = \frac{1}{3}\frac{d\lbrack C\rbrack}{dt}