Question
Question: Consider the cell \( \text{Cu} \mid \text{Cu}^{+2} \parallel \text{Ag}^{+} \mid \text{Ag} \). If the...
Consider the cell Cu∣Cu+2∥Ag+∣Ag. If the concentration of Cu+2 and Ag+ ions becomes ten times, then the emf of the cell will :-
increases by 0.0591 V
decreases by 0.0591 V
increases by 0.0295 V
decreases by 0.0295 V
increases by 0.0295 V
Solution
The given cell is Cu∣Cu2+∥Ag+∣Ag.
-
Half-cell reactions and the overall cell reaction:
- Anode (oxidation): Cu(s)→Cu2+(aq)+2e−
- Cathode (reduction): Ag+(aq)+e−→Ag(s)
Balanced cathode reaction: 2Ag+(aq)+2e−→2Ag(s)
Overall balanced cell reaction: Cu(s)+2Ag+(aq)→Cu2+(aq)+2Ag(s)
-
Number of electrons transferred (n): From the balanced reaction, n=2.
-
Reaction quotient (Q): For the reaction Cu(s)+2Ag+(aq)→Cu2+(aq)+2Ag(s), the reaction quotient Q is: Q=[Ag+]2[Cu2+]
-
Nernst Equation: The Nernst equation at 298 K is: Ecell=Ecell0−n0.0591logQ
Initial concentrations: [Cu2+]1 and [Ag+]1. Initial EMF of the cell (E1): E1=Ecell0−20.0591log[Ag+]12[Cu2+]1
-
New reaction quotient (Q2) when concentrations become ten times: New concentrations: [Cu2+]2=10[Cu2+]1 and [Ag+]2=10[Ag+]1. The new reaction quotient (Q2): Q2=[Ag+]22[Cu2+]2=(10[Ag+]1)210[Cu2+]1=100[Ag+]1210[Cu2+]1=101[Ag+]12[Cu2+]1 So, Q2=101Q1.
-
New EMF (E2): Substitute Q2 into the Nernst equation: E2=Ecell0−20.0591logQ2 E2=Ecell0−20.0591log(101Q1) E2=Ecell0−20.0591(log101+logQ1) Since log101=−1: E2=Ecell0−20.0591(−1+logQ1) E2=Ecell0−20.0591logQ1+20.0591 E2=(Ecell0−20.0591logQ1)+20.0591 We know that the term in the parenthesis is the initial EMF, E1: E2=E1+20.0591
-
Change in EMF: The change in EMF is E2−E1: ΔE=E2−E1=20.0591 ΔE=0.02955 V
Thus, the emf of the cell increases by 0.0295 V.