Solveeit Logo

Question

Question: Consider the cell \( \text{Cu} \mid \text{Cu}^{+2} \parallel \text{Ag}^{+} \mid \text{Ag} \). If the...

Consider the cell CuCu+2Ag+Ag\text{Cu} \mid \text{Cu}^{+2} \parallel \text{Ag}^{+} \mid \text{Ag}. If the concentration of Cu+2\text{Cu}^{+2} and Ag+\text{Ag}^{+} ions becomes ten times, then the emf of the cell will :-

A

increases by 0.0591 V

B

decreases by 0.0591 V

C

increases by 0.0295 V

D

decreases by 0.0295 V

Answer

increases by 0.0295 V

Explanation

Solution

The given cell is CuCu2+Ag+Ag\text{Cu} \mid \text{Cu}^{2+} \parallel \text{Ag}^{+} \mid \text{Ag}.

  1. Half-cell reactions and the overall cell reaction:

    • Anode (oxidation): Cu(s)Cu2+(aq)+2e\text{Cu}(s) \rightarrow \text{Cu}^{2+}(aq) + 2e^{-}
    • Cathode (reduction): Ag+(aq)+eAg(s)\text{Ag}^{+}(aq) + e^{-} \rightarrow \text{Ag}(s)

    Balanced cathode reaction: 2Ag+(aq)+2e2Ag(s)2\text{Ag}^{+}(aq) + 2e^{-} \rightarrow 2\text{Ag}(s)

    Overall balanced cell reaction: Cu(s)+2Ag+(aq)Cu2+(aq)+2Ag(s)\text{Cu}(s) + 2\text{Ag}^{+}(aq) \rightarrow \text{Cu}^{2+}(aq) + 2\text{Ag}(s)

  2. Number of electrons transferred (n): From the balanced reaction, n=2n = 2.

  3. Reaction quotient (Q): For the reaction Cu(s)+2Ag+(aq)Cu2+(aq)+2Ag(s)\text{Cu}(s) + 2\text{Ag}^{+}(aq) \rightarrow \text{Cu}^{2+}(aq) + 2\text{Ag}(s), the reaction quotient QQ is: Q=[Cu2+][Ag+]2Q = \frac{[\text{Cu}^{2+}]}{[\text{Ag}^{+}]^2}

  4. Nernst Equation: The Nernst equation at 298 K is: Ecell=Ecell00.0591nlogQE_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.0591}{n} \log Q

    Initial concentrations: [Cu2+]1[\text{Cu}^{2+}]_1 and [Ag+]1[\text{Ag}^{+}]_1. Initial EMF of the cell (E1E_1): E1=Ecell00.05912log[Cu2+]1[Ag+]12E_1 = E_{\text{cell}}^0 - \frac{0.0591}{2} \log \frac{[\text{Cu}^{2+}]_1}{[\text{Ag}^{+}]_1^2}

  5. New reaction quotient (Q2Q_2) when concentrations become ten times: New concentrations: [Cu2+]2=10[Cu2+]1[\text{Cu}^{2+}]_2 = 10[\text{Cu}^{2+}]_1 and [Ag+]2=10[Ag+]1[\text{Ag}^{+}]_2 = 10[\text{Ag}^{+}]_1. The new reaction quotient (Q2Q_2): Q2=[Cu2+]2[Ag+]22=10[Cu2+]1(10[Ag+]1)2=10[Cu2+]1100[Ag+]12=110[Cu2+]1[Ag+]12Q_2 = \frac{[\text{Cu}^{2+}]_2}{[\text{Ag}^{+}]_2^2} = \frac{10[\text{Cu}^{2+}]_1}{(10[\text{Ag}^{+}]_1)^2} = \frac{10[\text{Cu}^{2+}]_1}{100[\text{Ag}^{+}]_1^2} = \frac{1}{10} \frac{[\text{Cu}^{2+}]_1}{[\text{Ag}^{+}]_1^2} So, Q2=110Q1Q_2 = \frac{1}{10} Q_1.

  6. New EMF (E2E_2): Substitute Q2Q_2 into the Nernst equation: E2=Ecell00.05912logQ2E_2 = E_{\text{cell}}^0 - \frac{0.0591}{2} \log Q_2 E2=Ecell00.05912log(110Q1)E_2 = E_{\text{cell}}^0 - \frac{0.0591}{2} \log \left(\frac{1}{10} Q_1\right) E2=Ecell00.05912(log110+logQ1)E_2 = E_{\text{cell}}^0 - \frac{0.0591}{2} \left(\log \frac{1}{10} + \log Q_1\right) Since log110=1\log \frac{1}{10} = -1: E2=Ecell00.05912(1+logQ1)E_2 = E_{\text{cell}}^0 - \frac{0.0591}{2} \left(-1 + \log Q_1\right) E2=Ecell00.05912logQ1+0.05912E_2 = E_{\text{cell}}^0 - \frac{0.0591}{2} \log Q_1 + \frac{0.0591}{2} E2=(Ecell00.05912logQ1)+0.05912E_2 = \left(E_{\text{cell}}^0 - \frac{0.0591}{2} \log Q_1\right) + \frac{0.0591}{2} We know that the term in the parenthesis is the initial EMF, E1E_1: E2=E1+0.05912E_2 = E_1 + \frac{0.0591}{2}

  7. Change in EMF: The change in EMF is E2E1E_2 - E_1: ΔE=E2E1=0.05912\Delta E = E_2 - E_1 = \frac{0.0591}{2} ΔE=0.02955 V\Delta E = 0.02955 \text{ V}

    Thus, the emf of the cell increases by 0.0295 V.