Question
Quantitative Aptitude Question on Sequence and Series
Consider the arithmetic progression 3,7,11,…and let An denote the sum of the first n terms of this progression.Then the value of 251∑n=125An is
404
442
455
415
455
Solution
The correct answer is C:455
Given the arithmetic progression: 3,7,11,..., where An denotes the sum of the first n terms of this progression.
Common difference (d) between consecutive terms:7-3=4.
The nth term (an) of an arithmetic progression:an=a1+(n−1)×d.
Substitute values (a1=3, d = 4, n is term number):
an=3+(n−1)×4,
an=4n−1.
Sum of the first n terms (An) of an arithmetic progression:
An=2n×[2a1+(n−1)d].
Substitute values and simplify:
An=2n×(2×3+(n−1)×4),
An=2n×(6+4n−4),
An=2n×(4n+2),
An=2n2+n.
Calculate the value of 251∑n=125An:
(251)Σn=125(An)=(251)×(A1+A2+A3+...+A25).
Substitute expression for An into the sum:
(251)×(2×12+1+2×22+2+2×32+3+...+2×252+25).
Simplify using sum of squares and sum of natural numbers formulas:
(251)×(2×6(25∗(25+1)∗(2∗25+1))+2(25×(25+1))).
Further simplification:
2×6(25×26×51)+2(25×26),
2×25×13×17+25×13,
25×13×(2×17+1),
25×13×35.
Finally,the value of (251)×Σn=125(An) is 13×35=455.
So, the answer is c. 455.