Solveeit Logo

Question

Quantitative Aptitude Question on Sequence and Series

Consider the arithmetic progression 3,7,11,…and let AnA_n denote the sum of the first n terms of this progression.Then the value of 125n=125An\frac{1}{25}∑^{25}_{n=1}A_n is

A

404

B

442

C

455

D

415

Answer

455

Explanation

Solution

The correct answer is C:455
Given the arithmetic progression: 3,7,11,..., where AnA_n denotes the sum of the first n terms of this progression.
Common difference (d) between consecutive terms:7-3=4.
The nth term (an)(a_n) of an arithmetic progression:an=a1+(n1)×da_n=a_1+(n-1)\times{d}.
Substitute values (a1=3a_1=3, d = 4, n is term number):
an=3+(n1)×4a_n=3+(n-1)\times4,
an=4n1a_n=4n-1.
Sum of the first n terms (An)(A_n) of an arithmetic progression:
An=n2×[2a1+(n1)d]A_n=\frac{n}{2}\times[2a_1+(n-1)d].
Substitute values and simplify:
An=n2×(2×3+(n1)×4)A_n=\frac{n}{2}\times(2\times3+(n-1)\times4),
An=n2×(6+4n4)A_n=\frac{n}{2}\times(6+4n-4),
An=n2×(4n+2)A_n=\frac{n}{2}\times(4n+2),
An=2n2+nA_n = 2n^2 + n.
Calculate the value of 125n=125An\frac{1}{25}∑^{25}_{n=1} A_n:
(125)Σn=125(An)=(125)×(A1+A2+A3+...+A25)(\frac{1}{25})Σ^{25}_{n=1}(A_n)=(\frac{1}{25})\times(A_1 + A_2 + A_3 + ... + A_25).
Substitute expression for An into the sum:
(125)×(2×12+1+2×22+2+2×32+3+...+2×252+25)(\frac{1}{25}) \times (2 \times 1^2 + 1 + 2 \times 2^2 + 2 + 2\times3^2 + 3 + ... + 2\times25^2+25).
Simplify using sum of squares and sum of natural numbers formulas:
(125)×(2×(25(25+1)(225+1))6+(25×(25+1))2)(\frac{1}{25}) \times (2 \times \frac{(25 * (25 + 1) * (2 * 25 + 1))}{6}+\frac{(25\times (25 + 1))}{2}).
Further simplification:
2×(25×26×51)6+(25×26)22 \times \frac{(25 \times 26 \times 51)}{6}+\frac{(25 \times 26)}{2},
2×25×13×17+25×132 \times 25 \times 13 \times 17 + 25 \times 13,
25×13×(2×17+1)25 \times 13 \times (2 \times 17 + 1),
25×13×3525 \times 13 \times 35.
Finally,the value of (125)×Σn=125(An)(\frac{1}{25}) \times Σ^{25}_{n=1}(A_n) is 13×35=45513 \times 35 = 455.
So, the answer is c. 455.