Solveeit Logo

Question

Question: $\sum_{n=0}^{\infty} S_n$ is equal to...

n=0Sn\sum_{n=0}^{\infty} S_n is equal to

A

1+eπ1+eπ\frac{1+e^{\pi}}{1+e^{-\pi}}

B

12(1+eπ)(1eπ)\frac{1}{2} \frac{(1+e^{-\pi})}{(1-e^{-\pi})}

C

12(1eπ)\frac{1}{2(1-e^{-\pi})}

D

none of these

Answer

12(1+eπ)(1eπ)\frac{1}{2} \frac{(1+e^{-\pi})}{(1-e^{-\pi})}

Explanation

Solution

The area SnS_n is given by the integral of the absolute value of the function y=exsinxy = e^{-x} \sin x from x=nπx = n\pi to x=(n+1)πx = (n+1)\pi.

Sn=nπ(n+1)πexsinxdxS_n = \int_{n\pi}^{(n+1)\pi} |e^{-x} \sin x| dx.

Since ex>0e^{-x} > 0 for all xx, this is Sn=nπ(n+1)πexsinxdxS_n = \int_{n\pi}^{(n+1)\pi} e^{-x} |\sin x| dx.

In the interval [nπ,(n+1)π][n\pi, (n+1)\pi], the sign of sinx\sin x is constant, given by (1)n(-1)^n.

So, sinx=(1)nsin(xnπ)=sin(xnπ)|\sin x| = |(-1)^n \sin(x-n\pi)| = |\sin(x-n\pi)|. For x[nπ,(n+1)π]x \in [n\pi, (n+1)\pi], let u=xnπu = x-n\pi, then u[0,π]u \in [0, \pi]. In this interval, sinu0\sin u \geq 0, so sinu=sinu|\sin u| = \sin u.

Thus, sinx=sin(xnπ)|\sin x| = \sin(x-n\pi).

Let's use the substitution u=xnπu = x-n\pi in the integral for SnS_n. When x=nπx=n\pi, u=0u=0. When x=(n+1)πx=(n+1)\pi, u=πu=\pi. dx=dudx = du.

x=u+nπx = u+n\pi, so ex=e(u+nπ)=euenπe^{-x} = e^{-(u+n\pi)} = e^{-u} e^{-n\pi}.

sinx=sin(xnπ)=sinu|\sin x| = \sin(x-n\pi) = \sin u.

Sn=0πeuenπsinudu=enπ0πeusinuduS_n = \int_0^{\pi} e^{-u} e^{-n\pi} \sin u du = e^{-n\pi} \int_0^{\pi} e^{-u} \sin u du.

Let A=0πeusinuduA = \int_0^{\pi} e^{-u} \sin u du. We can evaluate this integral using integration by parts.

Let I=eusinuduI = \int e^{-u} \sin u du.

Using integration by parts fg=fgfg\int f g' = f g - \int f' g:

Let f=sinuf = \sin u, g=eug' = e^{-u}. Then f=cosuf' = \cos u, g=eug = -e^{-u}.

I=eusinucosu(eu)du=eusinu+eucosuduI = -e^{-u} \sin u - \int \cos u (-e^{-u}) du = -e^{-u} \sin u + \int e^{-u} \cos u du.

Now evaluate eucosudu\int e^{-u} \cos u du. Let f=cosuf = \cos u, g=eug' = e^{-u}. Then f=sinuf' = -\sin u, g=eug = -e^{-u}.

eucosudu=eucosu(sinu)(eu)du=eucosueusinudu=eucosuI\int e^{-u} \cos u du = -e^{-u} \cos u - \int (-\sin u) (-e^{-u}) du = -e^{-u} \cos u - \int e^{-u} \sin u du = -e^{-u} \cos u - I.

Substituting this back into the expression for II:

I=eusinu+(eucosuI)I = -e^{-u} \sin u + (-e^{-u} \cos u - I)

2I=eu(sinu+cosu)2I = -e^{-u} (\sin u + \cos u)

I=12eu(sinu+cosu)+CI = -\frac{1}{2} e^{-u} (\sin u + \cos u) + C.

Now evaluate the definite integral AA:

A=[12eu(sinu+cosu)]0πA = [-\frac{1}{2} e^{-u} (\sin u + \cos u)]_0^{\pi}

A=(12eπ(sinπ+cosπ))(12e0(sin0+cos0))A = \left(-\frac{1}{2} e^{-\pi} (\sin \pi + \cos \pi)\right) - \left(-\frac{1}{2} e^{-0} (\sin 0 + \cos 0)\right)

A=(12eπ(01))(121(0+1))A = \left(-\frac{1}{2} e^{-\pi} (0 - 1)\right) - \left(-\frac{1}{2} \cdot 1 \cdot (0 + 1)\right)

A=12eπ+12=12(1+eπ)A = \frac{1}{2} e^{-\pi} + \frac{1}{2} = \frac{1}{2} (1 + e^{-\pi}).

So, Sn=enπA=enπ12(1+eπ)S_n = e^{-n\pi} A = e^{-n\pi} \frac{1}{2} (1 + e^{-\pi}).

We need to find the sum n=0Sn\sum_{n=0}^{\infty} S_n.

n=0Sn=n=0enπ12(1+eπ)\sum_{n=0}^{\infty} S_n = \sum_{n=0}^{\infty} e^{-n\pi} \frac{1}{2} (1 + e^{-\pi})

n=0Sn=12(1+eπ)n=0(eπ)n\sum_{n=0}^{\infty} S_n = \frac{1}{2} (1 + e^{-\pi}) \sum_{n=0}^{\infty} (e^{-\pi})^n.

This is an infinite geometric series with first term a=(eπ)0=1a = (e^{-\pi})^0 = 1 and common ratio r=eπr = e^{-\pi}.

Since π>0\pi > 0, eπ<1e^{-\pi} < 1, so the series converges.

The sum of the geometric series is a1r=11eπ\frac{a}{1-r} = \frac{1}{1 - e^{-\pi}}.

Therefore, n=0Sn=12(1+eπ)11eπ=121+eπ1eπ\sum_{n=0}^{\infty} S_n = \frac{1}{2} (1 + e^{-\pi}) \frac{1}{1 - e^{-\pi}} = \frac{1}{2} \frac{1 + e^{-\pi}}{1 - e^{-\pi}}.