Solveeit Logo

Question

Question: Consider that two series are given as \( {{S}_{n}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3...

Consider that two series are given as Sn=13+23+33+...........+n3{{S}_{n}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} and Tn=1+2+3+..........+n{{T}_{n}}=1+2+3+..........+n , then:
1. Sn=Tn{{S}_{n}}={{T}_{n}}
2. Sn=Tn4{{S}_{n}}=T_{n}^{4}
3. Sn=Tn2{{S}_{n}}=T_{n}^{2}
4. Sn=Tn3{{S}_{n}}=T_{n}^{3}

Explanation

Solution

Use the formula of the sum of all the cubes of n natural number (i.e. 13+23+33+...........+n3{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} ) is \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\\{ \dfrac{n\left( n+1 \right)}{2} \right\\}}^{2}} and also use the formula of the sum of the n number which are in arithmetic progression , that is Tn=n2(2(1)+(n1)(1))  \begin{aligned} & {{T}_{n}}=\dfrac{n}{2}\left( 2(1)+(n-1)(1) \right) \\\ & \\\ \end{aligned} , where , a = first term and d is the common difference, to find the sum of Tn=1+2+3+..........+n{{T}_{n}}=1+2+3+..........+n and try to relate their sum.

Complete step-by-step answer:
It is given in the question that Sn=13+23+33+...........+n3{{S}_{n}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} , then by using the formula of sum of the cube of n natural number (i.e. \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\\{ \dfrac{n\left( n+1 \right)}{2} \right\\}}^{2}} ), we can write Sn{{S}_{n}} as:
\sum\limits_{a=1}^{n}{{{a}^{3}}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}}={{\left\\{ \dfrac{n\left( n+1 \right)}{2} \right\\}}^{2}}
In the question it is given that
13+23+33+...........+n3=Sn{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}}={{S}_{n}}
Hence, {{S}_{n}}={{\left\\{ \dfrac{n(n+1)}{2} \right\\}}^{2}}.....................(1)
Now, Tn=1+2+3+..........+n{{T}_{n}}=1+2+3+..........+n , is an arithmetic progression in which the common difference is ‘1’ and the first term is ‘1’.
Hence, by using the formula of the Summation of first n term of the arithmetic progression, that is
Tn=n2(2a+(n1)d)..........(2)  \begin{aligned} & {{T}_{n}}=\dfrac{n}{2}\left( 2a+(n-1)d \right)..........(2) \\\ & \\\ \end{aligned} , where Tn{{T}_{n}} will be the sum of n numbers which are in arithmetic progression.
Here, a = first term = 1
d = common difference = 1
Hence, by putting value of a and d in equation (2) we will get:
Tn=n2(2(1)+(n1)(1))  \begin{aligned} & {{T}_{n}}=\dfrac{n}{2}\left( 2(1)+(n-1)(1) \right) \\\ & \\\ \end{aligned} Tn=n(n+1)2.....................(3)  \begin{aligned} & {{T}_{n}}=\dfrac{n(n+1)}{2}.....................(3) \\\ & \\\ \end{aligned}
Now, by putting the value of equation (1) in equation (3), that is we will put Tn{{T}_{n}} in place of n(n+1)2\dfrac{n(n+1)}{2} in equation (1), we will get:
Sn=(Tn)2{{S}_{n}}={{\left( {{T}_{n}} \right)}^{2}}
Hence, Sn=Tn2{{S}_{n}}=T_{n}^{2}
Hence, option 3 is our required answer.

Note: The above solution can also be found by directly using the formula of the sum of the n natural number (i.e. 1+2+3+..........+n1+2+3+..........+n ) is a=1na=n(n+1)2\sum\limits_{a=1}^{n}{a}=\dfrac{n(n+1)}{2} and put its value in sum of the cube of n natural number, (i.e. 13+23+33+...........+n3{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} ) is \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\\{ \dfrac{n\left( n+1 \right)}{2} \right\\}}^{2}} .