Solveeit Logo

Question

Mathematics Question on mathematical reasoning

Consider : Statement-I : (pq)(pq)(p \wedge \sim q) \wedge ( \sim p\wedge q) is a fallacy. Statement-II : (pq)(qp)(p\to q) \leftrightarrow (\sim q \to \sim p) is a tautology.

A

Statement-I is true, Statement-II is true, Statement-II is not a correct explanation for Statement-I

B

Statement-I is true, Statement-II is false

C

Statement-I is false, Statement-II is true

D

Statement-I is true, Statement-II is true , Statement-II is a correct explanation for statement-I

Answer

Statement-I is true, Statement-II is true, Statement-II is not a correct explanation for Statement-I

Explanation

Solution

Lets prepare the truth table for the statements.

Then Statement-I is fallacy.

Then Statement-II is tautology .
(pq)(qp)-\sim (\sim p \vee q) \wedge \sim (\sim q \vee p)
((pq)(qp))\equiv \, \sim (( \sim p \vee q) \vee (\sim q \vee p))
((pq)(qp))T\equiv\,\sim (( p \to q) \vee (q \to p)) \equiv \sim T
Thus Statement-I is true because its negation is false.
((pq)(qp)((qp)(pq)))\left(\left(p\rightarrow q\right)\rightarrow\left(\sim q\rightarrow\sim p\right)\wedge\left(\left(\sim q\rightarrow\sim p\right)\rightarrow\left(p\rightarrow q\right)\right) \right)
=((pq)(qp)((qp)(pq)))= \left(\left(\sim p\vee q\right)\rightarrow\left(q \vee \sim p\right)\wedge \left(\left(q \vee \sim p\right)\rightarrow\left(\sim p \vee q\right)\right)\right)
TTT\equiv T \wedge T \equiv T Then Statement-II is true.