Question
Mathematics Question on mathematical reasoning
Consider : Statement-I : (p∧∼q)∧(∼p∧q) is a fallacy. Statement-II : (p→q)↔(∼q→∼p) is a tautology.
Statement-I is true, Statement-II is true, Statement-II is not a correct explanation for Statement-I
Statement-I is true, Statement-II is false
Statement-I is false, Statement-II is true
Statement-I is true, Statement-II is true , Statement-II is a correct explanation for statement-I
Statement-I is true, Statement-II is true, Statement-II is not a correct explanation for Statement-I
Solution
Lets prepare the truth table for the statements.
Then Statement-I is fallacy.
Then Statement-II is tautology .
−∼(∼p∨q)∧∼(∼q∨p)
≡∼((∼p∨q)∨(∼q∨p))
≡∼((p→q)∨(q→p))≡∼T
Thus Statement-I is true because its negation is false.
((p→q)→(∼q→∼p)∧((∼q→∼p)→(p→q)))
=((∼p∨q)→(q∨∼p)∧((q∨∼p)→(∼p∨q)))
≡T∧T≡T Then Statement-II is true.