Solveeit Logo

Question

Question: Consider Polynomials P(x) of **degree at most 3**, each of whose coefficients is an element of {0,1,...

Consider Polynomials P(x) of degree at most 3, each of whose coefficients is an element of {0,1,2,3,4,5,6,7,8,9}.

How many such polynomials satisfy P(-1) = -9

A

110

B

143

C

165

D

220

E

286

Answer

220

Explanation

Solution

The polynomial P(x) is of degree at most 3, so it can be written as:

P(x)=ax3+bx2+cx+dP(x) = ax^3 + bx^2 + cx + d

The coefficients a, b, c, d are elements of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

We are given the condition P(-1) = -9. Substitute x = -1 into the polynomial:

P(1)=a(1)3+b(1)2+c(1)+dP(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d

P(1)=a+bc+dP(-1) = -a + b - c + d

So, we have the equation:

a+bc+d=9-a + b - c + d = -9

Rearranging the terms, we get:

b+d=a+c9b + d = a + c - 9

Let S1=b+dS_1 = b+d and S2=a+cS_2 = a+c. The equation becomes S1=S29S_1 = S_2 - 9.

Since a, b, c, d are integers from 0 to 9, the possible range for S1S_1 and S2S_2 is:

Minimum sum: 0+0=00+0 = 0 Maximum sum: 9+9=189+9 = 18 So, 0S1180 \le S_1 \le 18 and 0S2180 \le S_2 \le 18.

From S1=S29S_1 = S_2 - 9: Since S10S_1 \ge 0, we must have S290    S29S_2 - 9 \ge 0 \implies S_2 \ge 9. Since S118S_1 \le 18, we must have S2918    S227S_2 - 9 \le 18 \implies S_2 \le 27. Combining with S218S_2 \le 18, the valid range for S2S_2 is 9S2189 \le S_2 \le 18.

Now, we need to find the number of ways to obtain a sum kk from two coefficients chosen from {0, 1, ..., 9}. Let this be N(k)N(k). For two non-negative integers x,yx, y such that x,y{0,1,...,n}x,y \in \{0, 1, ..., n\}, the number of solutions to x+y=kx+y=k is:

  • If 0kn0 \le k \le n: k+1k+1 ways
  • If n<k2nn < k \le 2n: 2nk+12n - k + 1 ways

In our case, n=9n=9. So, N(k)N(k) is:

  • For 0k90 \le k \le 9: N(k)=k+1N(k) = k+1
  • For 10k1810 \le k \le 18: N(k)=2×9k+1=19kN(k) = 2 \times 9 - k + 1 = 19 - k

We need to sum the product of the number of ways to get S2S_2 and the number of ways to get S1=S29S_1 = S_2 - 9, for all valid values of S2S_2. The total number of polynomials is S2=918N(S2)×N(S29)\sum_{S_2=9}^{18} N(S_2) \times N(S_2 - 9).

Let's calculate the terms:

  1. If S2=9S_2 = 9: S1=0S_1 = 0. N(9)=9+1=10N(9) = 9+1 = 10. N(0)=0+1=1N(0) = 0+1 = 1. Product = 10×1=1010 \times 1 = 10.
  2. If S2=10S_2 = 10: S1=1S_1 = 1. N(10)=1910=9N(10) = 19-10 = 9. N(1)=1+1=2N(1) = 1+1 = 2. Product = 9×2=189 \times 2 = 18.
  3. If S2=11S_2 = 11: S1=2S_1 = 2. N(11)=1911=8N(11) = 19-11 = 8. N(2)=2+1=3N(2) = 2+1 = 3. Product = 8×3=248 \times 3 = 24.
  4. If S2=12S_2 = 12: S1=3S_1 = 3. N(12)=1912=7N(12) = 19-12 = 7. N(3)=3+1=4N(3) = 3+1 = 4. Product = 7×4=287 \times 4 = 28.
  5. If S2=13S_2 = 13: S1=4S_1 = 4. N(13)=1913=6N(13) = 19-13 = 6. N(4)=4+1=5N(4) = 4+1 = 5. Product = 6×5=306 \times 5 = 30.
  6. If S2=14S_2 = 14: S1=5S_1 = 5. N(14)=1914=5N(14) = 19-14 = 5. N(5)=5+1=6N(5) = 5+1 = 6. Product = 5×6=305 \times 6 = 30.
  7. If S2=15S_2 = 15: S1=6S_1 = 6. N(15)=1915=4N(15) = 19-15 = 4. N(6)=6+1=7N(6) = 6+1 = 7. Product = 4×7=284 \times 7 = 28.
  8. If S2=16S_2 = 16: S1=7S_1 = 7. N(16)=1916=3N(16) = 19-16 = 3. N(7)=7+1=8N(7) = 7+1 = 8. Product = 3×8=243 \times 8 = 24.
  9. If S2=17S_2 = 17: S1=8S_1 = 8. N(17)=1917=2N(17) = 19-17 = 2. N(8)=8+1=9N(8) = 8+1 = 9. Product = 2×9=182 \times 9 = 18.
  10. If S2=18S_2 = 18: S1=9S_1 = 9. N(18)=1918=1N(18) = 19-18 = 1. N(9)=9+1=10N(9) = 9+1 = 10. Product = 1×10=101 \times 10 = 10.

Summing these products: Total = 10+18+24+28+30+30+28+24+18+1010 + 18 + 24 + 28 + 30 + 30 + 28 + 24 + 18 + 10 Total = (10+10)+(18+18)+(24+24)+(28+28)+(30+30)(10+10) + (18+18) + (24+24) + (28+28) + (30+30) Total = 20+36+48+56+6020 + 36 + 48 + 56 + 60 Total = 56+104+6056 + 104 + 60 Total = 160+60=220160 + 60 = 220.