Solveeit Logo

Question

Question: Consider lines $L_1: \overrightarrow{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(2\hat{i} + 3\hat{j...

Consider lines L1:r=i^+2j^+3k^+λ(2i^+3j^+4k^)L_1: \overrightarrow{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k}) and L2:2i^+4j^+6k^+μ(3i^+7j^+6k^)L_2: 2\hat{i} + 4\hat{j} + 6\hat{k} + \mu(3\hat{i} + 7\hat{j} + 6\hat{k}). If point P, Q lies on the lines L1L_1 and L2L_2 respectively, then PQ\overrightarrow{PQ} CANNOT be parallel to

A

i^+j^+8k^\hat{i} + \hat{j} + 8\hat{k}

B

i^+j^+2k^\hat{i} + \hat{j} + 2\hat{k}

C

i^+j^+4k^\hat{i} + \hat{j} + 4\hat{k}

D

i^+j^+6k^\hat{i} + \hat{j} + 6\hat{k}

Answer

i^+j^+2k^\hat{i} + \hat{j} + 2\hat{k}

Explanation

Solution

Let P be a point on L1L_1 and Q be a point on L2L_2. The position vectors are: OP=(1+2λ)i^+(2+3λ)j^+(3+4λ)k^\overrightarrow{OP} = (1+2\lambda)\hat{i} + (2+3\lambda)\hat{j} + (3+4\lambda)\hat{k} OQ=(2+3μ)i^+(4+7μ)j^+(6+6μ)k^\overrightarrow{OQ} = (2+3\mu)\hat{i} + (4+7\mu)\hat{j} + (6+6\mu)\hat{k}

The vector PQ\overrightarrow{PQ} is given by OQOP\overrightarrow{OQ} - \overrightarrow{OP}: PQ=[(2+3μ)(1+2λ)]i^+[(4+7μ)(2+3λ)]j^+[(6+6μ)(3+4λ)]k^\overrightarrow{PQ} = [(2+3\mu) - (1+2\lambda)]\hat{i} + [(4+7\mu) - (2+3\lambda)]\hat{j} + [(6+6\mu) - (3+4\lambda)]\hat{k} PQ=(1+3μ2λ)i^+(2+7μ3λ)j^+(3+6μ4λ)k^\overrightarrow{PQ} = (1+3\mu-2\lambda)\hat{i} + (2+7\mu-3\lambda)\hat{j} + (3+6\mu-4\lambda)\hat{k}

We can rewrite PQ\overrightarrow{PQ} as: PQ=(i^+2j^+3k^)+μ(3i^+7j^+6k^)λ(2i^+3j^+4k^)\overrightarrow{PQ} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \mu(3\hat{i} + 7\hat{j} + 6\hat{k}) - \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})

Let a=i^+2j^+3k^\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} (the difference between the position vectors of points on L2L_2 and L1L_1). Let d1=2i^+3j^+4k^\vec{d}_1 = 2\hat{i} + 3\hat{j} + 4\hat{k} (direction vector of L1L_1). Let d2=3i^+7j^+6k^\vec{d}_2 = 3\hat{i} + 7\hat{j} + 6\hat{k} (direction vector of L2L_2).

So, PQ=a+μd2λd1\overrightarrow{PQ} = \vec{a} + \mu\vec{d}_2 - \lambda\vec{d}_1.

The vector PQ\overrightarrow{PQ} can be parallel to a vector v\vec{v} if PQ=kv\overrightarrow{PQ} = k\vec{v} for some scalar kk. This implies a+μd2λd1=kv\vec{a} + \mu\vec{d}_2 - \lambda\vec{d}_1 = k\vec{v}, or a=kvμd2+λd1\vec{a} = k\vec{v} - \mu\vec{d}_2 + \lambda\vec{d}_1. This means that a\vec{a} must lie in the span of {v,d1,d2}\{\vec{v}, \vec{d}_1, \vec{d}_2\}.

First, let's check if a\vec{a} lies in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}. This means checking if a=c1d1+c2d2\vec{a} = c_1\vec{d}_1 + c_2\vec{d}_2 for scalars c1,c2c_1, c_2. i^+2j^+3k^=c1(2i^+3j^+4k^)+c2(3i^+7j^+6k^)\hat{i} + 2\hat{j} + 3\hat{k} = c_1(2\hat{i} + 3\hat{j} + 4\hat{k}) + c_2(3\hat{i} + 7\hat{j} + 6\hat{k}) Equating coefficients:

  1. 1=2c1+3c21 = 2c_1 + 3c_2
  2. 2=3c1+7c22 = 3c_1 + 7c_2
  3. 3=4c1+6c23 = 4c_1 + 6c_2

Solving equations 1 and 2: Multiply eq 1 by 3 and eq 2 by 2: 3=6c1+9c23 = 6c_1 + 9c_2 4=6c1+14c24 = 6c_1 + 14c_2 Subtracting the first from the second: 1=5c2    c2=1/51 = 5c_2 \implies c_2 = 1/5. Substitute c2=1/5c_2 = 1/5 into eq 1: 1=2c1+3(1/5)    1=2c1+3/5    2/5=2c1    c1=1/51 = 2c_1 + 3(1/5) \implies 1 = 2c_1 + 3/5 \implies 2/5 = 2c_1 \implies c_1 = 1/5.

Now check if these values satisfy eq 3: 4c1+6c2=4(1/5)+6(1/5)=4/5+6/5=10/5=24c_1 + 6c_2 = 4(1/5) + 6(1/5) = 4/5 + 6/5 = 10/5 = 2. Since 232 \neq 3, a\vec{a} does NOT lie in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}.

Since a\vec{a} is not in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}, for a\vec{a} to be in the span of {v,d1,d2}\{\vec{v}, \vec{d}_1, \vec{d}_2\}, the vector v\vec{v} must NOT be in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}. If v\vec{v} were in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}, then the span of {v,d1,d2}\{\vec{v}, \vec{d}_1, \vec{d}_2\} would be the same as the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}, which does not contain a\vec{a}.

Therefore, PQ\overrightarrow{PQ} can be parallel to v\vec{v} if and only if v\vec{v} is NOT in the plane spanned by {d1,d2}\{\vec{d}_1, \vec{d}_2\}. The question asks for which vector PQ\overrightarrow{PQ} CANNOT be parallel to. This means we are looking for a vector v\vec{v} that IS in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}.

We check which of the given options is a linear combination of d1\vec{d}_1 and d2\vec{d}_2. A vector v\vec{v} is in the span of d1\vec{d}_1 and d2\vec{d}_2 if and only if the scalar triple product [v,d1,d2]=0[\vec{v}, \vec{d}_1, \vec{d}_2] = 0.

Let's test option B: vB=i^+j^+2k^\vec{v}_B = \hat{i} + \hat{j} + 2\hat{k}. [vB,d1,d2]=112234376[\vec{v}_B, \vec{d}_1, \vec{d}_2] = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & 4 \\ 3 & 7 & 6 \end{vmatrix} =1347612436+22337= 1 \begin{vmatrix} 3 & 4 \\ 7 & 6 \end{vmatrix} - 1 \begin{vmatrix} 2 & 4 \\ 3 & 6 \end{vmatrix} + 2 \begin{vmatrix} 2 & 3 \\ 3 & 7 \end{vmatrix} =1(1828)1(1212)+2(149)= 1(18 - 28) - 1(12 - 12) + 2(14 - 9) =1(10)1(0)+2(5)= 1(-10) - 1(0) + 2(5) =100+10=0= -10 - 0 + 10 = 0.

Since the scalar triple product is 0, vB\vec{v}_B is in the span of {d1,d2}\{\vec{d}_1, \vec{d}_2\}. Thus, PQ\overrightarrow{PQ} CANNOT be parallel to i^+j^+2k^\hat{i} + \hat{j} + 2\hat{k}.

For completeness, let's check the other options: A. vA=i^+j^+8k^\vec{v}_A = \hat{i} + \hat{j} + 8\hat{k} [vA,d1,d2]=118234376=1(1828)1(1212)+8(149)=100+8(5)=300[\vec{v}_A, \vec{d}_1, \vec{d}_2] = \begin{vmatrix} 1 & 1 & 8 \\ 2 & 3 & 4 \\ 3 & 7 & 6 \end{vmatrix} = 1(18-28) - 1(12-12) + 8(14-9) = -10 - 0 + 8(5) = 30 \neq 0.

C. vC=i^+j^+4k^\vec{v}_C = \hat{i} + \hat{j} + 4\hat{k} [vC,d1,d2]=114234376=1(1828)1(1212)+4(149)=100+4(5)=100[\vec{v}_C, \vec{d}_1, \vec{d}_2] = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 3 & 4 \\ 3 & 7 & 6 \end{vmatrix} = 1(18-28) - 1(12-12) + 4(14-9) = -10 - 0 + 4(5) = 10 \neq 0.

D. vD=i^+j^+6k^\vec{v}_D = \hat{i} + \hat{j} + 6\hat{k} [vD,d1,d2]=116234376=1(1828)1(1212)+6(149)=100+6(5)=200[\vec{v}_D, \vec{d}_1, \vec{d}_2] = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 3 & 4 \\ 3 & 7 & 6 \end{vmatrix} = 1(18-28) - 1(12-12) + 6(14-9) = -10 - 0 + 6(5) = 20 \neq 0.

Therefore, the only vector that lies in the span of d1\vec{d}_1 and d2\vec{d}_2 is i^+j^+2k^\hat{i} + \hat{j} + 2\hat{k}.