Solveeit Logo

Question

Question: Consider $I_1 = \int_0^{\frac{\pi}{2}}\frac{\cos x - \sin x}{1 - \sin x \cdot \cos x}dx$; $I_2 = \in...

Consider I1=0π2cosxsinx1sinxcosxdxI_1 = \int_0^{\frac{\pi}{2}}\frac{\cos x - \sin x}{1 - \sin x \cdot \cos x}dx; I2=02loge(2x1)dxI_2 = \int_0^2 \log_e(\frac{2}{x} - 1)dx; I3=π2π2sin5x dxI_3 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^5 x \ dx; I4=ππcos3x dxI_4 = \int_{-\pi}^{\pi} \cos^3 x \ dx.

Select the INCORRECT statements:

A

The sum of all the integrals is zero

B

The value of each integral is zero

C

Value of exactly one integral is non-zero

D

Value of at least one integral is non-zero

Answer

Value of exactly one integral is non-zero, Value of at least one integral is non-zero

Explanation

Solution

The problem requires us to evaluate four definite integrals and then determine which of the given statements are incorrect.

1. Evaluate I1=0π2cosxsinx1sinxcosxdxI_1 = \int_0^{\frac{\pi}{2}}\frac{\cos x - \sin x}{1 - \sin x \cdot \cos x}dx

We use the property abf(x)dx=abf(a+bx)dx\int_a^b f(x) dx = \int_a^b f(a+b-x) dx. Here a=0,b=π2a=0, b=\frac{\pi}{2}. So, a+bx=π2xa+b-x = \frac{\pi}{2}-x. I1=0π2cos(π2x)sin(π2x)1sin(π2x)cos(π2x)dxI_1 = \int_0^{\frac{\pi}{2}}\frac{\cos(\frac{\pi}{2}-x) - \sin(\frac{\pi}{2}-x)}{1 - \sin(\frac{\pi}{2}-x) \cdot \cos(\frac{\pi}{2}-x)}dx I1=0π2sinxcosx1cosxsinxdxI_1 = \int_0^{\frac{\pi}{2}}\frac{\sin x - \cos x}{1 - \cos x \cdot \sin x}dx I1=0π2cosxsinx1sinxcosxdxI_1 = -\int_0^{\frac{\pi}{2}}\frac{\cos x - \sin x}{1 - \sin x \cdot \cos x}dx This means I1=I1I_1 = -I_1, which implies 2I1=02I_1 = 0, so I1=0I_1 = 0.

2. Evaluate I2=02loge(2x1)dxI_2 = \int_0^2 \log_e(\frac{2}{x} - 1)dx

We use the property 0af(x)dx=0af(ax)dx\int_0^a f(x) dx = \int_0^a f(a-x) dx. Here a=2a=2. I2=02loge(22x1)dxI_2 = \int_0^2 \log_e(\frac{2}{2-x} - 1)dx I2=02loge(2(2x)2x)dxI_2 = \int_0^2 \log_e(\frac{2 - (2-x)}{2-x})dx I2=02loge(x2x)dxI_2 = \int_0^2 \log_e(\frac{x}{2-x})dx Now, add the original expression for I2I_2 and this new form: 2I2=02[loge(2xx)+loge(x2x)]dx2I_2 = \int_0^2 \left[ \log_e(\frac{2-x}{x}) + \log_e(\frac{x}{2-x}) \right] dx Using the logarithm property logA+logB=log(AB)\log A + \log B = \log(AB): 2I2=02loge(2xxx2x)dx2I_2 = \int_0^2 \log_e\left( \frac{2-x}{x} \cdot \frac{x}{2-x} \right) dx 2I2=02loge(1)dx2I_2 = \int_0^2 \log_e(1) dx 2I2=020dx=02I_2 = \int_0^2 0 dx = 0 So, I2=0I_2 = 0. (Note: This is an improper integral at x=0x=0 and x=2x=2, but it converges to 0.)

3. Evaluate I3=π2π2sin5x dxI_3 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^5 x \ dx

We check if the integrand f(x)=sin5xf(x) = \sin^5 x is an even or odd function. f(x)=(sin(x))5=(sinx)5=sin5x=f(x)f(-x) = (\sin(-x))^5 = (-\sin x)^5 = -\sin^5 x = -f(x). Since f(x)=f(x)f(-x) = -f(x), f(x)f(x) is an odd function. For an odd function, aaf(x)dx=0\int_{-a}^a f(x) dx = 0. Therefore, I3=0I_3 = 0.

4. Evaluate I4=ππcos3x dxI_4 = \int_{-\pi}^{\pi} \cos^3 x \ dx

We check if the integrand f(x)=cos3xf(x) = \cos^3 x is an even or odd function. f(x)=(cos(x))3=(cosx)3=cos3x=f(x)f(-x) = (\cos(-x))^3 = (\cos x)^3 = \cos^3 x = f(x). Since f(x)=f(x)f(-x) = f(x), f(x)f(x) is an even function. For an even function, aaf(x)dx=20af(x)dx\int_{-a}^a f(x) dx = 2\int_0^a f(x) dx. So, I4=20πcos3x dxI_4 = 2\int_0^{\pi} \cos^3 x \ dx. We can rewrite cos3x\cos^3 x as cos2xcosx=(1sin2x)cosx\cos^2 x \cdot \cos x = (1-\sin^2 x)\cos x. Let u=sinxu = \sin x. Then du=cosxdxdu = \cos x dx. When x=0x=0, u=sin0=0u=\sin 0 = 0. When x=πx=\pi, u=sinπ=0u=\sin \pi = 0. So, I4=200(1u2)duI_4 = 2\int_0^0 (1-u^2) du. Since the upper and lower limits of integration are the same, the integral is 0. Therefore, I4=0I_4 = 0.

Summary of integral values: I1=0I_1 = 0 I2=0I_2 = 0 I3=0I_3 = 0 I4=0I_4 = 0

Evaluate the given statements:

  • The sum of all the integrals is zero: I1+I2+I3+I4=0+0+0+0=0I_1 + I_2 + I_3 + I_4 = 0 + 0 + 0 + 0 = 0. This statement is CORRECT.

  • The value of each integral is zero: As calculated, I1=0,I2=0,I3=0,I4=0I_1=0, I_2=0, I_3=0, I_4=0. This statement is CORRECT.

  • Value of exactly one integral is non-zero: Since all integrals are zero, this statement is INCORRECT.

  • Value of at least one integral is non-zero: Since all integrals are zero, this statement is INCORRECT.

The question asks to select the INCORRECT statements.

The final answer is Value of exactly one integral is non-zero, Value of at least one integral is non-zero\boxed{\text{Value of exactly one integral is non-zero, Value of at least one integral is non-zero}}

Explanation of the solution: Each integral is evaluated using properties of definite integrals.

  1. I1I_1: Using the property 0af(x)dx=0af(ax)dx\int_0^a f(x)dx = \int_0^a f(a-x)dx, the integral transforms into its negative, leading to I1=0I_1=0.
  2. I2I_2: Using the same property as I1I_1, the integral transforms into 02loge(x2x)dx\int_0^2 \log_e(\frac{x}{2-x})dx. Adding this to the original I2I_2 yields 02loge(1)dx=0\int_0^2 \log_e(1)dx = 0, hence I2=0I_2=0.
  3. I3I_3: The integrand sin5x\sin^5 x is an odd function, and the integration limits are symmetric about zero ([π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]). For an odd function f(x)f(x), aaf(x)dx=0\int_{-a}^a f(x)dx = 0. Thus, I3=0I_3=0.
  4. I4I_4: The integrand cos3x\cos^3 x is an even function, and the integration limits are symmetric about zero ([π,π][-\pi, \pi]). For an even function f(x)f(x), aaf(x)dx=20af(x)dx\int_{-a}^a f(x)dx = 2\int_0^a f(x)dx. Substituting u=sinxu=\sin x in 20π(1sin2x)cosxdx2\int_0^\pi (1-\sin^2 x)\cos x dx changes the limits of integration to 00 to 00, resulting in I4=0I_4=0. Since all integrals I1,I2,I3,I4I_1, I_2, I_3, I_4 are zero, the statements "The sum of all the integrals is zero" and "The value of each integral is zero" are correct. The statements "Value of exactly one integral is non-zero" and "Value of at least one integral is non-zero" are incorrect.