Solveeit Logo

Question

Question: Consider $f(x) = (x - 1) \tan^{-1}x - \frac{1}{2} \ln(1 + x^2), x > 1$. Identify which of the follow...

Consider f(x)=(x1)tan1x12ln(1+x2),x>1f(x) = (x - 1) \tan^{-1}x - \frac{1}{2} \ln(1 + x^2), x > 1. Identify which of the following statement(s) is(are) correct?

A

equation f(x)=0f(x) = 0 has exactly one real root in (1,)(1, \infty)

B

f(x)f'(x) is increasing in (1,)(1, \infty)

C

f(x+4)f(x)>2π  x(1,)f(x+4) - f(x) > 2\pi \ \forall \ x \in (1, \infty)

D

f(x+4)f(x)<2π  x(1,)f(x + 4) - f(x) < 2\pi \ \forall \ x \in (1, \infty)

Answer

A, B, D

Explanation

Solution

The problem asks us to analyze the given function f(x)=(x1)tan1x12ln(1+x2)f(x) = (x - 1) \tan^{-1}x - \frac{1}{2} \ln(1 + x^2) for x>1x > 1 and determine the correctness of the provided statements.

Step 1: Calculate the first derivative, f(x)f'(x). Using the product rule for (x1)tan1x(x-1)\tan^{-1}x and the chain rule for 12ln(1+x2)\frac{1}{2}\ln(1+x^2): ddx[(x1)tan1x]=1tan1x+(x1)11+x2\frac{d}{dx} [(x-1)\tan^{-1}x] = 1 \cdot \tan^{-1}x + (x-1) \cdot \frac{1}{1+x^2} ddx[12ln(1+x2)]=1211+x22x=x1+x2\frac{d}{dx} \left[ \frac{1}{2}\ln(1+x^2) \right] = \frac{1}{2} \cdot \frac{1}{1+x^2} \cdot 2x = \frac{x}{1+x^2} So, f(x)=tan1x+x11+x2x1+x2f'(x) = \tan^{-1}x + \frac{x-1}{1+x^2} - \frac{x}{1+x^2} f(x)=tan1x+x1x1+x2f'(x) = \tan^{-1}x + \frac{x-1-x}{1+x^2} f(x)=tan1x11+x2f'(x) = \tan^{-1}x - \frac{1}{1+x^2}

Step 2: Calculate the second derivative, f(x)f''(x). f(x)=ddx(tan1x11+x2)f''(x) = \frac{d}{dx} \left( \tan^{-1}x - \frac{1}{1+x^2} \right) f(x)=11+x2(2x)(1+x2)2f''(x) = \frac{1}{1+x^2} - \frac{-(2x)}{(1+x^2)^2} f(x)=11+x2+2x(1+x2)2f''(x) = \frac{1}{1+x^2} + \frac{2x}{(1+x^2)^2} To combine these terms, find a common denominator: f(x)=1+x2(1+x2)2+2x(1+x2)2f''(x) = \frac{1+x^2}{(1+x^2)^2} + \frac{2x}{(1+x^2)^2} f(x)=1+x2+2x(1+x2)2f''(x) = \frac{1+x^2+2x}{(1+x^2)^2} f(x)=(1+x)2(1+x2)2f''(x) = \frac{(1+x)^2}{(1+x^2)^2}

Step 3: Analyze statement (B) - f(x)f'(x) is increasing in (1,)(1, \infty). For x>1x > 1, (1+x)2>0(1+x)^2 > 0 and (1+x2)2>0(1+x^2)^2 > 0. Therefore, f(x)>0f''(x) > 0 for all x(1,)x \in (1, \infty). Since f(x)>0f''(x) > 0, f(x)f'(x) is strictly increasing in (1,)(1, \infty). Thus, statement (B) is correct.

Step 4: Analyze statement (A) - equation f(x)=0f(x) = 0 has exactly one real root in (1,)(1, \infty). To determine the number of roots, we need to understand the behavior of f(x)f(x). First, evaluate the limits of f(x)f'(x): limx1+f(x)=tan1(1)11+12=π412\lim_{x \to 1^+} f'(x) = \tan^{-1}(1) - \frac{1}{1+1^2} = \frac{\pi}{4} - \frac{1}{2} Since π3.14159\pi \approx 3.14159, π40.785\frac{\pi}{4} \approx 0.785, so π4120.7850.5=0.285>0\frac{\pi}{4} - \frac{1}{2} \approx 0.785 - 0.5 = 0.285 > 0. limxf(x)=limx(tan1x11+x2)=π20=π2\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \left( \tan^{-1}x - \frac{1}{1+x^2} \right) = \frac{\pi}{2} - 0 = \frac{\pi}{2} Since f(x)f'(x) is strictly increasing and f(1+)>0f'(1^+) > 0, it implies that f(x)>0f'(x) > 0 for all x(1,)x \in (1, \infty). This means f(x)f(x) is strictly increasing in (1,)(1, \infty).

Now, evaluate the limits of f(x)f(x): limx1+f(x)=(11)tan1(1)12ln(1+12)=012ln(2)=12ln(2)\lim_{x \to 1^+} f(x) = (1-1)\tan^{-1}(1) - \frac{1}{2}\ln(1+1^2) = 0 - \frac{1}{2}\ln(2) = -\frac{1}{2}\ln(2) Since ln(2)>0\ln(2) > 0, f(1+)<0f(1^+) < 0. limxf(x)=limx[(x1)tan1x12ln(1+x2)]\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[ (x-1)\tan^{-1}x - \frac{1}{2}\ln(1+x^2) \right] As xx \to \infty, tan1xπ2\tan^{-1}x \to \frac{\pi}{2}. So, the first term approaches (x1)π2(x-1)\frac{\pi}{2}. The second term is 12ln(1+x2)12ln(x2)=lnx-\frac{1}{2}\ln(1+x^2) \approx -\frac{1}{2}\ln(x^2) = -\ln x. So, for large xx, f(x)π2xπ2lnxf(x) \approx \frac{\pi}{2}x - \frac{\pi}{2} - \ln x. Since the linear term π2x\frac{\pi}{2}x grows much faster than the logarithmic term lnx\ln x, limxf(x)=\lim_{x \to \infty} f(x) = \infty.

Since f(x)f(x) is continuous, strictly increasing, starts from a negative value (12ln(2)-\frac{1}{2}\ln(2)) and goes to positive infinity, by the Intermediate Value Theorem, there must be exactly one real root for f(x)=0f(x) = 0 in (1,)(1, \infty). Thus, statement (A) is correct.

Step 5: Analyze statements (C) and (D) - f(x+4)f(x)f(x+4) - f(x) vs 2π2\pi. By the Mean Value Theorem, for any x(1,)x \in (1, \infty), there exists a c(x,x+4)c \in (x, x+4) such that: f(x+4)f(x)=(x+4x)f(c)=4f(c)f(x+4) - f(x) = (x+4 - x) f'(c) = 4 f'(c) Since c(x,x+4)c \in (x, x+4) and x>1x > 1, we have c>1c > 1. We know that f(x)f'(x) is strictly increasing in (1,)(1, \infty) and its limit as xx \to \infty is π2\frac{\pi}{2}. This means that for any finite value of c>1c > 1, f(c)f'(c) will always be less than its limiting value. So, f(c)<π2f'(c) < \frac{\pi}{2} for all c(1,)c \in (1, \infty). Therefore, 4f(c)<4π24 f'(c) < 4 \cdot \frac{\pi}{2} f(x+4)f(x)<2πf(x+4) - f(x) < 2\pi This holds for all x(1,)x \in (1, \infty). Thus, statement (D) is correct. Consequently, statement (C) is incorrect.

Conclusion: Statements (A), (B), and (D) are correct.

The final answer is A,B,D\boxed{A, B, D}

Explanation of the solution:

  1. Calculate Derivatives: Find the first derivative f(x)=tan1x11+x2f'(x) = \tan^{-1}x - \frac{1}{1+x^2} and the second derivative f(x)=(1+x)2(1+x2)2f''(x) = \frac{(1+x)^2}{(1+x^2)^2}.
  2. Analyze f(x)f''(x) for Monotonicity of f(x)f'(x): Since x>1x > 1, f(x)>0f''(x) > 0. This implies f(x)f'(x) is strictly increasing in (1,)(1, \infty). So, (B) is correct.
  3. Analyze f(x)f'(x) for Monotonicity of f(x)f(x): Calculate limx1+f(x)=π412>0\lim_{x \to 1^+} f'(x) = \frac{\pi}{4} - \frac{1}{2} > 0. Since f(x)f'(x) is increasing and starts positive, f(x)>0f'(x) > 0 for all x(1,)x \in (1, \infty). This means f(x)f(x) is strictly increasing in (1,)(1, \infty).
  4. Analyze f(x)f(x) for Roots: Calculate limx1+f(x)=12ln(2)<0\lim_{x \to 1^+} f(x) = -\frac{1}{2}\ln(2) < 0. Calculate limxf(x)=\lim_{x \to \infty} f(x) = \infty (since π2x\frac{\pi}{2}x dominates lnx\ln x). As f(x)f(x) is continuous and strictly increasing from a negative value to positive infinity, it crosses the x-axis exactly once. So, f(x)=0f(x)=0 has exactly one real root in (1,)(1, \infty). Thus, (A) is correct.
  5. Analyze f(x+4)f(x)f(x+4)-f(x) using Mean Value Theorem: Apply MVT: f(x+4)f(x)=4f(c)f(x+4) - f(x) = 4f'(c) for some c(x,x+4)c \in (x, x+4). Since c>1c > 1 and f(x)f'(x) is increasing with limxf(x)=π2\lim_{x \to \infty} f'(x) = \frac{\pi}{2}, we have f(c)<π2f'(c) < \frac{\pi}{2}. Therefore, 4f(c)<4π2=2π4f'(c) < 4 \cdot \frac{\pi}{2} = 2\pi. So, f(x+4)f(x)<2πf(x+4) - f(x) < 2\pi. Thus, (D) is correct and (C) is incorrect.

Answer: The correct statements are (A), (B), and (D).

The final answer is A,B,D\boxed{A, B, D}