Solveeit Logo

Question

Question: Consider $f(x) = \frac{4^x}{4^x+2}$, if $f(\frac{1}{1997})+f(\frac{2}{1997})+ \dots + f(\frac{1996}{...

Consider f(x)=4x4x+2f(x) = \frac{4^x}{4^x+2}, if f(11997)+f(21997)++f(19961997)=499qf(\frac{1}{1997})+f(\frac{2}{1997})+ \dots + f(\frac{1996}{1997}) = 499q, then q is equal to

Answer

2

Explanation

Solution

To solve the problem, we first analyze the given function f(x)=4x4x+2f(x) = \frac{4^x}{4^x+2}.

We look for a special property of this function, specifically f(x)+f(1x)f(x) + f(1-x).

  1. Find f(1x)f(1-x):

    Substitute (1x)(1-x) for xx in the function definition: f(1x)=41x41x+2f(1-x) = \frac{4^{1-x}}{4^{1-x}+2}

    We can rewrite 41x4^{1-x} as 44x=44x4 \cdot 4^{-x} = \frac{4}{4^x}.

    So, f(1x)=44x44x+2f(1-x) = \frac{\frac{4}{4^x}}{\frac{4}{4^x}+2}

    To simplify, multiply the numerator and denominator by 4x4^x:

    f(1x)=44+24xf(1-x) = \frac{4}{4+2 \cdot 4^x}

    Factor out 2 from the denominator:

    f(1x)=42(2+4x)=22+4xf(1-x) = \frac{4}{2(2+4^x)} = \frac{2}{2+4^x}

  2. Calculate f(x)+f(1x)f(x) + f(1-x):

    Now, add f(x)f(x) and f(1x)f(1-x):

    f(x)+f(1x)=4x4x+2+24x+2f(x) + f(1-x) = \frac{4^x}{4^x+2} + \frac{2}{4^x+2}

    Since both terms have the same denominator, we can add the numerators:

    f(x)+f(1x)=4x+24x+2=1f(x) + f(1-x) = \frac{4^x+2}{4^x+2} = 1

    This property, f(x)+f(1x)=1f(x) + f(1-x) = 1, is crucial for solving the problem.

  3. Evaluate the sum:

    The given sum is S=f(11997)+f(21997)++f(19961997)S = f(\frac{1}{1997})+f(\frac{2}{1997})+ \dots + f(\frac{1996}{1997}).

    Let N=1997N = 1997. The sum can be written as S=k=1N1f(kN)S = \sum_{k=1}^{N-1} f\left(\frac{k}{N}\right).

    The terms in the sum range from k=1k=1 to k=1996k=1996. There are 19961996 terms in total.

    We can pair the terms using the property f(x)+f(1x)=1f(x) + f(1-x) = 1.

    Consider a pair of terms f(kN)f\left(\frac{k}{N}\right) and f(NkN)f\left(\frac{N-k}{N}\right).

    Note that NkN=1kN\frac{N-k}{N} = 1 - \frac{k}{N}.

    So, f(kN)+f(NkN)=f(kN)+f(1kN)=1f\left(\frac{k}{N}\right) + f\left(\frac{N-k}{N}\right) = f\left(\frac{k}{N}\right) + f\left(1-\frac{k}{N}\right) = 1.

    The terms in the sum can be paired as follows:

    (f(11997)+f(19961997))+(f(21997)+f(19951997))+(f(\frac{1}{1997}) + f(\frac{1996}{1997})) + (f(\frac{2}{1997}) + f(\frac{1995}{1997})) + \dots

    Since there are 19961996 terms, and 19961996 is an even number, all terms can be perfectly paired.

    The number of such pairs is 19962=998\frac{1996}{2} = 998.

    Each pair sums to 1.

    Therefore, the total sum S=998×1=998S = 998 \times 1 = 998.

  4. Solve for q:

    We are given that the sum S=499qS = 499q.

    We found S=998S = 998.

    So, 998=499q998 = 499q.

    To find qq, divide both sides by 499499:

    q=998499q = \frac{998}{499}

    q=2q = 2

The final answer is 2\boxed{2}.

Explanation of the solution:

The function f(x)=4x4x+2f(x) = \frac{4^x}{4^x+2} possesses the property f(x)+f(1x)=1f(x) + f(1-x) = 1. This is derived by simplifying f(1x)f(1-x) to 24x+2\frac{2}{4^x+2} and adding it to f(x)f(x). The given sum consists of 19961996 terms of the form f(k1997)f(\frac{k}{1997}). By pairing terms f(k1997)f(\frac{k}{1997}) with f(1997k1997)f(\frac{1997-k}{1997}), each pair sums to f(k1997)+f(1k1997)=1f(\frac{k}{1997}) + f(1-\frac{k}{1997}) = 1. Since there are 19961996 terms, there are 1996/2=9981996/2 = 998 such pairs. Thus, the total sum is 998×1=998998 \times 1 = 998. Equating this to 499q499q, we get 998=499q998 = 499q, which yields q=2q=2.