Solveeit Logo

Question

Question: Consider \(\frac{r^{3} - 8}{r^{3} + 8}\)...

Consider r38r3+8\frac{r^{3} - 8}{r^{3} + 8}

A

Limh0Δp3\underset{h \rightarrow 0}{Lim}\frac{\Delta}{p^{3}} is discontinuous everywhere

B

limn\lim_{n \rightarrow \infty} is continuous everywhere but not differentiable at

x = 0

C

r=1nr2n3\frac{\sum_{r = 1}^{n}r^{2}}{n^{3}}exists in (–1, 1)

D

limn\lim_{n \rightarrow \infty}exists in (–2, 2)

Answer

limn\lim_{n \rightarrow \infty} is continuous everywhere but not differentiable at

x = 0

Explanation

Solution

We have, f(x)={x2x,x00,x=0f ( x ) = \left\{ \begin{array} { l l } \frac { x ^ { 2 } } { | x | } , & x \neq 0 \\ 0 , & x = 0 \end{array} \right. =

limx0f(x)=limx0x=0\lim _ { x \rightarrow 0 ^ { - } } f ( x ) = \lim _ { x \rightarrow 0 ^ { - } } - x = 0, limx0+f(x)=limx0+x=0\lim _ { x \rightarrow 0 ^ { + } } f ( x ) = \lim _ { x \rightarrow 0 ^ { + } } x = 0 and f(0)f ( 0 )

= 0.

So f(x)f ( x ) is continuous at x=0x = 0. Alsof(x)f ( x ) is continuous for all other values of x. Hence, f(x)f ( x ) is everywhere continuous.

Also, Rf(0)=f(0+0)R f ^ { \prime } ( 0 ) = f ^ { \prime } ( 0 + 0 )= limh0f(h)f(0)h0\lim _ { h \rightarrow 0 } \frac { f ( h ) - f ( 0 ) } { h - 0 } =limh0h0h=1\lim _ { h \rightarrow 0 } \frac { h - 0 } { h } = 1

i.e. Rf(0)=1R f ^ { \prime } ( 0 ) = 1 and Lf(0)=f(00)=limh0f(h)f(0)hL f ^ { \prime } ( 0 ) = f ^ { \prime } ( 0 - 0 ) = \lim _ { h \rightarrow 0 } \frac { f ( - h ) - f ( 0 ) } { - h }

=limh0hh=1\lim _ { h \rightarrow 0 } \frac { h } { - h } = - 1

i.e. Lf(0)=1L f ^ { \prime } ( 0 ) = - 1 So, Lf(0)Rf(0)L f ^ { \prime } ( 0 ) \neq R f ^ { \prime } ( 0 )

i.e., f(x)f ( x ) is not differentiable at x=0x = 0.