Solveeit Logo

Question

Question: Consider \[f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right),x \in \...

Consider f(x)=tan1(1+sinx1sinx),x(0,π2)f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right),x \in \left( {0,\dfrac{\pi }{2}} \right), a normal to y=f(x)y = f(x) at x=π6x = \dfrac{\pi }{6} also passes through the point:
A. (0,0)(0,0)
B. (0,2π3)(0,\dfrac{{2\pi }}{3})
C. (π6,0)(\dfrac{\pi }{6},0)
D. (π4,0)(\dfrac{\pi }{4},0)

Explanation

Solution

We use the given function and then substitute the value of ‘x’ to obtain the value of function at that point. Solve the given function using the concept of complementary angles. Use the formulas of 1cos2θ=2sin2θ1 - \cos 2\theta = 2{\sin ^2}\theta and 1+cos2θ=2cos2θ1 + \cos 2\theta = 2{\cos ^2}\theta to convert the fraction under the square root in terms of cotangent. Use the concept of complementary angles again to convert cotangent function into tangent function so as to cancel inverse of tangent given. Calculate slope of tangent by differentiating the function obtained. Use the formula of slope of normal to calculate slope of normal. Form equation of slope using point obtained and slope of the normal. Checks which of the given points satisfy the equation formed.

  • Sine and cosine are complementary angles, i.e. sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)
  • Tangent and cotangent are complementary angles, i.e. cotθ=tan(π2θ)\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)
  • Slope of tangent to the function y=f(x)y = f(x) is given by dydx=m\dfrac{{dy}}{{dx}} = m, where m is constant value
  • Slope of normal to the function y=f(x)y = f(x) is given by 1f(x)\dfrac{{ - 1}}{{f'(x)}}where f(x)=ddxf(x)f'(x) = \dfrac{d}{{dx}}f(x)

Complete step by step solution:
We are given f(x)=tan1(1+sinx1sinx),x(0,π2)f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right),x \in \left( {0,\dfrac{\pi }{2}} \right)..................… (1)
We find the value of the function at point x=π6x = \dfrac{\pi }{6} by substituting the value of x=π6x = \dfrac{\pi }{6}in equation (1)
f(π6)=tan1(1+sinπ61sinπ6)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin \dfrac{\pi }{6}}}{{1 - \sin \dfrac{\pi }{6}}}} } \right)
We know the value of sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}
f(π6)=tan1(1+12112)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \dfrac{1}{2}}}{{1 - \dfrac{1}{2}}}} } \right)
Take LCM in both numerator and denominator of the fraction in RHS of the equation
f(π6)=tan1(2+12212)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{\dfrac{{2 + 1}}{2}}}{{\dfrac{{2 - 1}}{2}}}} } \right)
f(π6)=tan1(3212)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{\dfrac{3}{2}}}{{\dfrac{1}{2}}}} } \right)
Write fraction in RHS in simpler form
f(π6)=tan1(32×21)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{3}{2} \times \dfrac{2}{1}} } \right)
Cancel same factors from numerator and denominator in fraction in RHS of the equation
f(π6)=tan1(3)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\sqrt 3 } \right)
Since we know tanπ3=3\tan \dfrac{\pi }{3} = \sqrt 3 . Substitute the value of tanπ3=3\tan \dfrac{\pi }{3} = \sqrt 3 in RHS
f(π6)=tan1(tanπ3)\Rightarrow f(\dfrac{\pi }{6}) = {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{3}} \right)
We cancel the function by its inverse in RHS of the equation
f(π6)=π3\Rightarrow f(\dfrac{\pi }{6}) = \dfrac{\pi }{3}
Since y=f(x)y = f(x), therefore when x=π6;y=π3x = \dfrac{\pi }{6};y = \dfrac{\pi }{3}
Point becomes (π6,π3)\left( {\dfrac{\pi }{6},\dfrac{\pi }{3}} \right)...................… (2)
Now we know f(x)=tan1(1+sinx1sinx)f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)
Since we know sine and cosine are complementary angles, i.e. sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)
Substitute the value of sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right) in function
f(x)=tan1(1+cos(π2x)1cos(π2x))\Rightarrow f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - x} \right)}}{{1 - \cos \left( {\dfrac{\pi }{2} - x} \right)}}} } \right)..................… (3)
Now we know the identities 1+cos2θ=2cos2θ1 + \cos 2\theta = 2{\cos ^2}\theta and 1cos2θ=2sin2θ1 - \cos 2\theta = 2{\sin ^2}\theta
If we put θ=(π4x2)\theta = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
1+cos2(π4x2)=2cos2(π4x2)\Rightarrow 1 + \cos 2\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = 2{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)and1cos2(π4x2)=2sin2(π4x2)1 - \cos 2\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = 2{\sin ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
Cancel 2 from the terms inside the angle
1+cos(π2x)=2cos2(π4x2)\Rightarrow 1 + \cos \left( {\dfrac{\pi }{2} - x} \right) = 2{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)and1cos(π2x)=2sin2(π4x2)1 - \cos \left( {\dfrac{\pi }{2} - x} \right) = 2{\sin ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)..................… (4)
Substitute values from equation (4) in equation (3)
f(x)=tan1(2cos2(π4x2)2sin2(π4x2))\Rightarrow f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}} } \right)
Cancel same factor i.e. 2 from both numerator and denominator in the fraction
f(x)=tan1(cos2(π4x2)sin2(π4x2))\Rightarrow f(x) = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}} } \right) …………...… (5)
Since we know cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta , equation (5) becomes
f(x)=tan1(cot2(π4x2))\Rightarrow f(x) = {\tan ^{ - 1}}\left( {\sqrt {{{\cot }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} } \right)
\Rightarrow f(x) = {\tan ^{ - 1}}\left( {\sqrt {{{\left\\{ {\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right\\}}^2}} } \right)
Cancel square root by square power in RHS of the equation
f(x)=tan1(cot(π4x2))\Rightarrow f(x) = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)......................… (6)
Since we know tangent and cotangent are complementary angles, i.e. cotθ=tan(π2θ)\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)
Then the value of cot(π4x2)=tan(π2(π4x2))\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = \tan \left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)
i.e. cot(π4x2)=tan(π2π4+x2)\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = \tan \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4} + \dfrac{x}{2}} \right)
Take LCM of terms inside the bracket which are not associated with the variable ‘x’.
i.e.cot(π4x2)=tan(2ππ4+x2)\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = \tan \left( {\dfrac{{2\pi - \pi }}{4} + \dfrac{x}{2}} \right)
i.e. cot(π4x2)=tan(π4+x2)\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = \tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)
Substitute this value ofcot(π4x2)=tan(π4+x2)\cot \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = \tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) in equation
f(x)=tan1[tan(π4+x2)]\Rightarrow f(x) = {\tan ^{ - 1}}\left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right]
Cancel inverse of the function with the same function
f(x)=(π4+x2)\Rightarrow f(x) = \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)
Now we find slope of tangent of the function by differentiating it
ddxf(x)=ddx(π4+x2)\Rightarrow \dfrac{d}{{dx}}f(x) = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)
f(x)=ddx(π4)+ddx(x2)\Rightarrow f'(x) = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)
Use differentiation formula ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}
f(x)=12\Rightarrow f'(x) = \dfrac{1}{2}
So, slope of tangent i.e. f(x)=12f'(x) = \dfrac{1}{2}
We know slope of normal =1/ = - 1/ slope of tangent of function
So, slope of normal =112=2 = \dfrac{{ - 1}}{{\dfrac{1}{2}}} = - 2
Now using the point (π6,π3)\left( {\dfrac{\pi }{6},\dfrac{\pi }{3}} \right)and slope of tangent 2 - 2 we form equation of tangent with the formula (yy1)=m(xx1)\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)
So, equation of normal to the function is (yπ3)=2(xπ6)\left( {y - \dfrac{\pi }{3}} \right) = - 2\left( {x - \dfrac{\pi }{6}} \right)
Take LCM on both side of the equation
(3yπ3)=2(6xπ6)\Rightarrow \left( {\dfrac{{3y - \pi }}{3}} \right) = - 2\left( {\dfrac{{6x - \pi }}{6}} \right)
Cancel same factors from numerator and denominator in RHS of the equation
(3yπ3)=(6xπ3)\Rightarrow \left( {\dfrac{{3y - \pi }}{3}} \right) = - \left( {\dfrac{{6x - \pi }}{3}} \right)
Cancel same factors from denominators in both sides of the equation
3yπ=6x+π\Rightarrow 3y - \pi = - 6x + \pi
Shift all values to left side of the equation
6x+3yππ=0\Rightarrow 6x + 3y - \pi - \pi = 0
6x+3y2π=0\Rightarrow 6x + 3y - 2\pi = 0.................… (7)
Now we check which of the given points (0,0)$$$$(0,\dfrac{{2\pi }}{3})$$$$(\dfrac{\pi }{6},0)$$$$(\dfrac{\pi }{4},0) satisfy equation (7)
Put x=0,y=0x = 0,y = 0 in equation (7)
6×0+3×02π=0\Rightarrow 6 \times 0 + 3 \times 0 - 2\pi = 0
02π=0\Rightarrow 0 - 2\pi = 0
2π=0\Rightarrow 2\pi = 0
This is contradiction as 2π02\pi \ne 0
Put x=0,y=2π3x = 0,y = \dfrac{{2\pi }}{3} in equation (7)
6×0+3×2π32π=0\Rightarrow 6 \times 0 + 3 \times \dfrac{{2\pi }}{3} - 2\pi = 0
0+2π2π=0\Rightarrow 0 + 2\pi - 2\pi = 0
0=0\Rightarrow 0 = 0
This point satisfies the equation (7)
Put x=π6,y=0x = \dfrac{\pi }{6},y = 0 in equation (7)
6×π6+3×02π=0\Rightarrow 6 \times \dfrac{\pi }{6} + 3 \times 0 - 2\pi = 0
π2π=0\Rightarrow \pi - 2\pi = 0
π=0\Rightarrow - \pi = 0
This is contradiction as π0 - \pi \ne 0
Put x=π4,y=0x = \dfrac{\pi }{4},y = 0 in equation (7)
6×π4+3×02π=0\Rightarrow 6 \times \dfrac{\pi }{4} + 3 \times 0 - 2\pi = 0
3π22π=0\Rightarrow \dfrac{{3\pi }}{2} - 2\pi = 0
Take LCM in LHS
3π4π2=0\Rightarrow \dfrac{{3\pi - 4\pi }}{2} = 0
Cross multiply values from LHS to RHS
π=0\Rightarrow - \pi = 0
This is contradiction as π0 - \pi \ne 0
The normal to y=f(x)y = f(x) at x=π6x = \dfrac{\pi }{6} also passes through the point (0,2π3)\left( {0,\dfrac{{2\pi }}{3}} \right)

\therefore Option B is correct.

Note: Many students make the mistake of rationalizing the term inside the inverse function which is not needed as we have to find the value of the inverse function at a given point which can be done by direct substitution. Also, many students use the formula of cotx=1tanx\cot x = \dfrac{1}{{\tan x}} while removing the inverse function which is wrong as then we will have the value of function in reciprocal form and we will not be able to cancel inverse by the given function.