Solveeit Logo

Question

Question: Consider \(f:\left\\{ 1,2,3 \right\\}\to \left\\{ a,b,c \right\\}\) and \(g:\left\\{ a,b,c \right\\}...

Consider f:\left\\{ 1,2,3 \right\\}\to \left\\{ a,b,c \right\\} and g:\left\\{ a,b,c \right\\}\to \left\\{ apple,ball,cat \right\\} defined as f(1)=a,f(2)=b,f(3)=c,g(a)=apple,g(b)=ball,g(c)=catf(1)=a,f(2)=b,f(3)=c,g(a)=apple,g(b)=ball,g(c)=cat . Show that f,g,gff,g,g\circ f are invertible. Find f1,g1{{f}^{-1}},{{g}^{-1}} and (gf)1{{\left( g\circ f \right)}^{-1}} . Show that (gf)1=f1g1{{\left( g\circ f \right)}^{-1}}={{f}^{-1}}\circ {{g}^{-1}} .

Explanation

Solution

Hint: At first we have to check if the functions f,gf,g are one to one and onto or not. A function is invertible only if the function is both one to one and onto.

Complete step-by-step answer:
The function f is defined as:
f:\left\\{ 1,2,3 \right\\}\to \left\\{ a,b,c \right\\}.
f(1)=a,f(2)=b,f(3)=cf(1)=a,f(2)=b,f(3)=c .
Here \left\\{ 1,2,3 \right\\} is the domain of the function f. \left\\{ a,b,c \right\\} is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
g:\left\\{ a,b,c \right\\}\to \left\\{ apple,ball,cat \right\\}
g(a)=apple,g(b)=ball,g(c)=catg(a)=apple, g(b)=ball, g(c)=cat
Here \left\\{ a,b,c \right\\} is the domain of the function. \left\\{ apple,ball,cat \right\\} is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, (g\circ f):\left\\{ 1,2,3 \right\\}\to \left\\{ apple,ball,cat \right\\} is defined as:
As (gf)(1)=g(f(1))=g(a)=apple\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple
(gf)(2)=g(f(2))=g(b)=ball (gf)(3)=g(f(3))=g(c)=cat \begin{aligned} & (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\\ & (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\\ \end{aligned}
gfg\circ f is one to one as every element of the domain \left\\{ 1,2,3 \right\\} has different image.
gfg\circ f is onto as every element of the codomain \left\\{ apple,ball,cat \right\\} has a preimage in the domain.

Therefore gfg\circ f is invertible.
We know that if a function ff maps one element xx to yy, then the inverse function maps the image yy to xx. That is:
f(x)=yf1(y)=xf\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x

Therefore,
f(1)=af1(a)=1 f(2)=bf1(b)=2 f(3)=cf1(c)=3 \begin{aligned} & f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\\ & f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\\ & f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\\ \end{aligned}

Hence,
{{f}^{-1}}:\left\\{ a,b,c \right\\}\to \left\\{ 1,2,3 \right\\} , such that:
f1(a)=1,f1(b)=2,f1(c)=3{{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3
Similarly,
g;(a)=appleg1(apple)=a g;(b)=ballg1(ball)=b g;(c)=catg1(cat)=c \begin{aligned} &g;\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\\ &g;\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\\ &g;\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\\ \end{aligned}

Therefore,
{{g}^{-1}}:\left\\{ apple,ball,cat \right\\}\to \left\\{ a,b,c \right\\} , such that:
g1(apple)=a g1(ball)=b g1(cat)=c \begin{aligned} & {{g}^{-1}}(apple)=a \\\ & {{g}^{-1}}\left( ball \right)=b \\\ & {{g}^{-1}}\left( cat \right)=c \\\ \end{aligned}
Similarly,
(gf)(1)=apple(gf)1(apple)=1 (gf)(2)=ball(gf)1(ball)=2 (gf)(3)=cat(gf)1(cat)=3 \begin{aligned} & \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\\ & \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\\ & \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\\ \end{aligned}
Therefore,
{{\left( g\circ f \right)}^{-1}}:\left\\{ apple,ball,cat \right\\}\to \left\\{ 1,2,3 \right\\} , such that:
(gf)1(apple)=1 (gf)1(ball)=b (gf)1(cat)=c \begin{aligned} & {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\\ & {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\\ & {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\\ \end{aligned}

Now,
(f1g1)(apple)=f1(g1(apple))=f1(a)=1 (f1g1)(ball)=f1(g1(ball))=f1(b)=2 (f1g1)(cat)=f1(g1(cat))=f1(c)=3  \begin{aligned} & \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\\ & \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\\ & \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\\ & \\\ \end{aligned}

Therefore,
(gf)1(apple)=(g1f1)(apple) (gf)1(ball)=(g1f1)(ball) (gf)1(cat)=(g1f1)(cat) \begin{aligned} & {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\\ & {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\\ & {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\\ \end{aligned}
Hence, (gf)1=(f1g1){{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)

Note: We generally make mistakes to find out the inverse function. Always remember:
f(x)=yf1(y)=xf\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x