Solveeit Logo

Question

Question: Consider complex numbers z and w satisfying the equation $z+w=\frac{\overline{z}}{w}$ and $\frac{1}{...

Consider complex numbers z and w satisfying the equation z+w=zwz+w=\frac{\overline{z}}{w} and 1w+z=wz\frac{1}{w}+z=w\overline{z}, then which of the following is/are correct?

A

The value of z+w|z| + |w| is 2

B

If arg(z) = π\pi then, arg(w) = π3-\frac{\pi}{3} or π3\frac{\pi}{3}

C

If w = 1, then Re(z) = 12\frac{1}{2}

D

If w = -1, then Re(z) = 12\frac{1}{2}

Answer

(B), (C), (D)

Explanation

Solution

Let the given equations be:

  1. z+w=zwz+w=\frac{\overline{z}}{w}

  2. 1w+z=wz\frac{1}{w}+z=w\overline{z}

Assume w0w \neq 0. Multiply both equations by ww:

1') zw+w2=zzw + w^2 = \overline{z}

2') 1+zw=w2z1 + zw = w^2\overline{z}

Subtract equation (1') from equation (2'):

(1+zw)(zw+w2)=w2zz(1 + zw) - (zw + w^2) = w^2\overline{z} - \overline{z}

1w2=z(w21)1 - w^2 = \overline{z}(w^2 - 1)

1w2=z(1w2)1 - w^2 = -\overline{z}(1 - w^2)

(1w2)+z(1w2)=0(1 - w^2) + \overline{z}(1 - w^2) = 0

(1w2)(1+z)=0(1 - w^2)(1 + \overline{z}) = 0

This implies either 1w2=01 - w^2 = 0 or 1+z=01 + \overline{z} = 0.

Case 1: 1+z=01 + \overline{z} = 0

This means z=1\overline{z} = -1, so z=1z = -1.

Substitute z=1z=-1 into the original equations.

Eq 1: 1+w=1w-1+w = \frac{-1}{w}

w+w2=1-w+w^2 = -1

w2w+1=0w^2 - w + 1 = 0

The solutions are w=1±142=1±i32w = \frac{1 \pm \sqrt{1-4}}{2} = \frac{1 \pm i\sqrt{3}}{2}.

These are eiπ/3e^{i\pi/3} and eiπ/3e^{-i\pi/3}. Let's check if these values of ww satisfy Eq 2 with z=1z=-1.

Eq 2: 1w+(1)=w(1)\frac{1}{w} + (-1) = w(-1)

1w1=w\frac{1}{w} - 1 = -w

1w+w=1\frac{1}{w} + w = 1

If w=1+i32=eiπ/3w = \frac{1+i\sqrt{3}}{2} = e^{i\pi/3}, then 1w=w=1i32=eiπ/3\frac{1}{w} = \overline{w} = \frac{1-i\sqrt{3}}{2} = e^{-i\pi/3}.

1w+w=1i32+1+i32=22=1\frac{1}{w} + w = \frac{1-i\sqrt{3}}{2} + \frac{1+i\sqrt{3}}{2} = \frac{2}{2} = 1. This is satisfied.

If w=1i32=eiπ/3w = \frac{1-i\sqrt{3}}{2} = e^{-i\pi/3}, then 1w=w=1+i32=eiπ/3\frac{1}{w} = \overline{w} = \frac{1+i\sqrt{3}}{2} = e^{i\pi/3}.

1w+w=1+i32+1i32=22=1\frac{1}{w} + w = \frac{1+i\sqrt{3}}{2} + \frac{1-i\sqrt{3}}{2} = \frac{2}{2} = 1. This is satisfied.

So, one set of solutions is z=1z=-1 and w=e±iπ/3w = e^{\pm i\pi/3}.

Case 2: 1w2=01 - w^2 = 0

This means w2=1w^2 = 1, so w=1w = 1 or w=1w = -1.

Subcase 2a: w=1w=1.

Substitute w=1w=1 into the original equations.

Eq 1: z+1=z1    z+1=zz+1 = \frac{\overline{z}}{1} \implies z+1 = \overline{z}.

Let z=x+iyz = x+iy. x+iy+1=xiyx+iy+1 = x-iy.

x+1+iy=xiyx+1+iy = x-iy.

Comparing real and imaginary parts:

x+1=x    1=0x+1 = x \implies 1=0, which is a contradiction.

y=y    2y=0    y=0y = -y \implies 2y=0 \implies y=0.

Since we have a contradiction (1=01=0), there is no solution for zz when w=1w=1.

Subcase 2b: w=1w=-1.

Substitute w=1w=-1 into the original equations.

Eq 1: z+(1)=z1    z1=z    z+z=1z+(-1) = \frac{\overline{z}}{-1} \implies z-1 = -\overline{z} \implies z+\overline{z} = 1.

Let z=x+iyz=x+iy. (x+iy)+(xiy)=1    2x=1    x=1/2(x+iy)+(x-iy) = 1 \implies 2x = 1 \implies x = 1/2.

So Re(z)=1/2Re(z) = 1/2. z=1/2+iyz = 1/2 + iy for any real yy.

Eq 2: 11+z=(1)z    1+z=z    z+z=1\frac{1}{-1} + z = (-1)\overline{z} \implies -1+z = -\overline{z} \implies z+\overline{z} = 1.

This is the same equation obtained from Eq 1.

So, the second set of solutions is w=1w=-1 and zz is any complex number with Re(z)=1/2Re(z)=1/2.

The possible solutions (z,w)(z,w) are:

  1. z=1z=-1 and w{eiπ/3,eiπ/3}w \in \{e^{i\pi/3}, e^{-i\pi/3}\}

  2. w=1w=-1 and Re(z)=1/2Re(z)=1/2

Now let's check the options:

(A) The value of z+w|z| + |w| is 2.

For solutions from Case 1: z=1z=-1, z=1|z|=1. w=e±iπ/3w=e^{\pm i\pi/3}, w=1|w|=1. z+w=1+1=2|z|+|w|=1+1=2.

For solutions from Case 2: w=1w=-1, w=1|w|=1. z=1/2+iyz=1/2+iy, z=(1/2)2+y2=1/4+y2|z|=\sqrt{(1/2)^2+y^2} = \sqrt{1/4+y^2}.

z+w=1/4+y2+1|z|+|w| = \sqrt{1/4+y^2}+1.

This value is 2 only if 1/4+y2=1\sqrt{1/4+y^2}=1, which means 1/4+y2=11/4+y^2=1, y2=3/4y^2=3/4, y=±3/2y=\pm \sqrt{3}/2.

For example, if z=1/2z=1/2 (i.e., y=0y=0), then z=1/2|z|=1/2, w=1|w|=1, and z+w=3/22|z|+|w|=3/2 \neq 2.

So, option (A) is not true for all solutions.

(B) If arg(z) = π\pi then, arg(w) = π3-\frac{\pi}{3} or π3\frac{\pi}{3}.

If arg(z)=π\arg(z)=\pi, then zz is a negative real number. From our solutions, z=1z=-1 is a negative real number with arg(z)=π\arg(z)=\pi.

When z=1z=-1, the possible values for ww are eiπ/3e^{i\pi/3} and eiπ/3e^{-i\pi/3}.

The arguments of these values are π/3\pi/3 and π/3-\pi/3 (modulo 2π2\pi).

So, if arg(z)=π\arg(z)=\pi (which implies z=1z=-1), then arg(w)=π/3\arg(w) = \pi/3 or π/3-\pi/3.

This option is correct.

(C) If w = 1, then Re(z) = 12\frac{1}{2}.

We found in Subcase 2a that w=1w=1 yields no solutions for zz.

The premise "If w=1" is false, as ww cannot be 1 for any solution. A conditional statement "If P then Q" is considered true if the premise P is false.

Thus, option (C) is correct.

(D) If w = -1, then Re(z) = 12\frac{1}{2}.

We found in Subcase 2b that if w=1w=-1, then zz must satisfy Re(z)=1/2Re(z)=1/2.

This option is correct.

The correct options are (B), (C), and (D).