Solveeit Logo

Question

Question: The value of $(a+b)^3 - (c + d)^3$ is equal to -...

The value of (a+b)3(c+d)3(a+b)^3 - (c + d)^3 is equal to -

A

1283\frac{-128}{3}

B

0

C

643\frac{-64}{3}

D

1423\frac{-142}{3}

Answer

0

Explanation

Solution

Given the biquadratic equation 81x4+216x3+216x2+96x=6581x^4 + 216x^3 + 216x^2 + 96x = 65, we can rewrite it as (3x+2)4=81(3x+2)^4 = 81.

Solving for x, we find the roots: a=13a = \frac{1}{3}, b=53b = -\frac{5}{3}, c=23+ic = -\frac{2}{3} + i, and d=23id = -\frac{2}{3} - i.

Therefore, a+b=1353=43a+b = \frac{1}{3} - \frac{5}{3} = -\frac{4}{3} and c+d=23+i23i=43c+d = -\frac{2}{3} + i -\frac{2}{3} - i = -\frac{4}{3}.

So, (a+b)3(c+d)3=(43)3(43)3=0(a+b)^3 - (c+d)^3 = (-\frac{4}{3})^3 - (-\frac{4}{3})^3 = 0.