Solveeit Logo

Question

Question: Consider an infinite wire having linear charge density 8µC/m. A point charge 1nC having mass 2.8 mg ...

Consider an infinite wire having linear charge density 8µC/m. A point charge 1nC having mass 2.8 mg is released from rest at a perpendicular distance 3 m from the wire. Find the velocity (in m/s) of the point charge when it is at a distance 12 m from the wire. (Take In 2 = 0.7).

Answer

12

Explanation

Solution

The electric field due to an infinite line charge with linear charge density λ\lambda at a perpendicular distance rr from the wire is given by E=λ2πϵ0rE = \frac{\lambda}{2\pi\epsilon_0 r}. The direction of the field is radially outwards if λ\lambda is positive.

The force on a point charge qq in this electric field is F=qE=qλ2πϵ0rF = qE = q \frac{\lambda}{2\pi\epsilon_0 r}. Since both λ\lambda and qq are positive, the force is directed radially outwards, away from the wire. This force is conservative, so we can use the principle of conservation of mechanical energy.

The potential energy of the point charge qq at a distance rr from the wire is PE(r)=qV(r)PE(r) = qV(r), where V(r)V(r) is the electric potential at distance rr. The potential difference between two points at distances r1r_1 and r2r_2 from the wire is given by:

V(r2)V(r1)=r1r2EdlV(r_2) - V(r_1) = -\int_{r_1}^{r_2} \vec{E} \cdot d\vec{l}

Since the motion is radial, Edl=Edr\vec{E} \cdot d\vec{l} = E dr.

V(r2)V(r1)=r1r2λ2πϵ0rdr=λ2πϵ0[lnr]r1r2=λ2πϵ0(lnr2lnr1)=λ2πϵ0(lnr1lnr2)=λ2πϵ0ln(r1r2)V(r_2) - V(r_1) = -\int_{r_1}^{r_2} \frac{\lambda}{2\pi\epsilon_0 r} dr = -\frac{\lambda}{2\pi\epsilon_0} [\ln r]_{r_1}^{r_2} = -\frac{\lambda}{2\pi\epsilon_0} (\ln r_2 - \ln r_1) = \frac{\lambda}{2\pi\epsilon_0} (\ln r_1 - \ln r_2) = \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r_1}{r_2}\right).

The change in potential energy as the charge moves from rir_i to rfr_f is:

ΔPE=PEfPEi=q(V(rf)V(ri))=qλ2πϵ0ln(rirf)\Delta PE = PE_f - PE_i = q(V(r_f) - V(r_i)) = q \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r_i}{r_f}\right).

According to the conservation of mechanical energy, the change in kinetic energy plus the change in potential energy is zero:

ΔKE+ΔPE=0\Delta KE + \Delta PE = 0

KEfKEi=ΔPE=qλ2πϵ0ln(rirf)=qλ2πϵ0ln(rfri)KE_f - KE_i = - \Delta PE = -q \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r_i}{r_f}\right) = q \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r_f}{r_i}\right).

The point charge is released from rest at ri=3r_i = 3 m, so its initial velocity vi=0v_i = 0 and initial kinetic energy KEi=12mvi2=0KE_i = \frac{1}{2} m v_i^2 = 0. The final distance is rf=12r_f = 12 m, and let the final velocity be vfv_f. The final kinetic energy is KEf=12mvf2KE_f = \frac{1}{2} m v_f^2.

Substituting these into the energy conservation equation:

12mvf20=qλ2πϵ0ln(rfri)\frac{1}{2} m v_f^2 - 0 = q \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r_f}{r_i}\right).

12mvf2=qλ2πϵ0ln(123)=qλ2πϵ0ln(4)\frac{1}{2} m v_f^2 = q \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{12}{3}\right) = q \frac{\lambda}{2\pi\epsilon_0} \ln(4).

We are given: λ=8μC/m=8×106C/m\lambda = 8 \, \mu C/m = 8 \times 10^{-6} \, C/m. q=1nC=1×109Cq = 1 \, nC = 1 \times 10^{-9} \, C. m=2.8mg=2.8×106kgm = 2.8 \, mg = 2.8 \times 10^{-6} \, kg. ln2=0.7\ln 2 = 0.7. Note that ln4=ln(22)=2ln2=2×0.7=1.4\ln 4 = \ln(2^2) = 2 \ln 2 = 2 \times 0.7 = 1.4. The constant 12πϵ0\frac{1}{2\pi\epsilon_0} can be written in terms of Coulomb's constant k=14πϵ0=9×109Nm2/C2k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \, Nm^2/C^2. So, 12πϵ0=2×14πϵ0=2k=2×9×109=18×109Nm2/C2\frac{1}{2\pi\epsilon_0} = 2 \times \frac{1}{4\pi\epsilon_0} = 2k = 2 \times 9 \times 10^9 = 18 \times 10^9 \, Nm^2/C^2.

Substitute the values into the equation for vf2v_f^2:

12(2.8×106)vf2=(1×109)(8×106)(18×109)(1.4)\frac{1}{2} (2.8 \times 10^{-6}) v_f^2 = (1 \times 10^{-9}) (8 \times 10^{-6}) (18 \times 10^9) (1.4).

(1.4×106)vf2=(8×18×1.4)×(109×106×109)(1.4 \times 10^{-6}) v_f^2 = (8 \times 18 \times 1.4) \times (10^{-9} \times 10^{-6} \times 10^9).

(1.4×106)vf2=(8×18×1.4)×106(1.4 \times 10^{-6}) v_f^2 = (8 \times 18 \times 1.4) \times 10^{-6}.

Divide both sides by (1.4×106)(1.4 \times 10^{-6}):

vf2=8×18v_f^2 = 8 \times 18.

vf2=144v_f^2 = 144.

vf=144=12v_f = \sqrt{144} = 12.

The velocity of the point charge when it is at a distance 12 m from the wire is 12 m/s.