Solveeit Logo

Question

Question: Consider an ellipse with major & minor axis having length 4 & $2\sqrt{3}$ respectively. Let P be any...

Consider an ellipse with major & minor axis having length 4 & 232\sqrt{3} respectively. Let P be any variable point on it. S & S'be the foci and C be the centre of ellipse Match List-I with List-II and select the correct answer using the code given below the list. List-I List-II (P) Maximum value of PS.PS' is (Q) Minimum value of (PS)2+(PS)2(PS)^2+(PS')^2 is (R) Minimum length of portion of tangent at P intercepted between principal axes is (S) If foot of normal from P on major axis is P' and normal at P cuts transverse axis at N, then CNCP\frac{CN}{CP'} is

A

3

B

1

C

2

D

4

E

8

F

2+32+\sqrt{3}

G

4

H

2+32+\sqrt{3}

I

1/4

Answer

P-3, Q-1, R-2, S-4

Explanation

Solution

The ellipse has a major axis of length 2a=42a = 4, so a=2a=2. The minor axis has length 2b=232b = 2\sqrt{3}, so b=3b=\sqrt{3}. The eccentricity ee is given by b2=a2(1e2)b^2 = a^2(1-e^2). (3)2=22(1e2)    3=4(1e2)    1e2=34    e2=14    e=12(\sqrt{3})^2 = 2^2(1-e^2) \implies 3 = 4(1-e^2) \implies 1-e^2 = \frac{3}{4} \implies e^2 = \frac{1}{4} \implies e = \frac{1}{2}. The foci are S=(ae,0)S=(ae, 0) and S=(ae,0)S'=(-ae, 0). ae=2×12=1ae = 2 \times \frac{1}{2} = 1. So S=(1,0)S=(1,0) and S=(1,0)S'=(-1,0). The center CC is (0,0)(0,0). Let P(x,y)P(x,y) be any point on the ellipse. The distances from P to the foci are PS=a+exPS = a+ex and PS=aexPS' = a-ex. For P(acosθ,bsinθ)=(2cosθ,3sinθ)P(a\cos\theta, b\sin\theta) = (2\cos\theta, \sqrt{3}\sin\theta), x=2cosθx = 2\cos\theta. PS=2+12(2cosθ)=2+cosθPS = 2 + \frac{1}{2}(2\cos\theta) = 2+\cos\theta. PS=212(2cosθ)=2cosθPS' = 2 - \frac{1}{2}(2\cos\theta) = 2-\cos\theta.

(P) Maximum value of PS.PS' PSPS=(2+cosθ)(2cosθ)=4cos2θPS \cdot PS' = (2+\cos\theta)(2-\cos\theta) = 4 - \cos^2\theta. This product is maximum when cos2θ\cos^2\theta is minimum, i.e., cos2θ=0\cos^2\theta = 0. Maximum value =40=4= 4 - 0 = 4. This matches with option (3).

(Q) Minimum value of (PS)2+(PS)2(PS)^2+(PS')^2 (PS)2+(PS)2=(2+cosθ)2+(2cosθ)2(PS)^2 + (PS')^2 = (2+\cos\theta)^2 + (2-\cos\theta)^2 =(4+4cosθ+cos2θ)+(44cosθ+cos2θ)= (4 + 4\cos\theta + \cos^2\theta) + (4 - 4\cos\theta + \cos^2\theta) =8+2cos2θ= 8 + 2\cos^2\theta. This sum is minimum when cos2θ\cos^2\theta is minimum, i.e., cos2θ=0\cos^2\theta = 0. Minimum value =8+2(0)=8= 8 + 2(0) = 8. This matches with option (1).

(R) Minimum length of portion of tangent at P intercepted between principal axes The equation of the tangent at P(x0,y0)P(x_0, y_0) is xx0a2+yy0b2=1\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1. For P(2cosθ,3sinθ)P(2\cos\theta, \sqrt{3}\sin\theta), the tangent is x(2cosθ)4+y(3sinθ)3=1\frac{x(2\cos\theta)}{4} + \frac{y(\sqrt{3}\sin\theta)}{3} = 1, which simplifies to xcosθ2+ysinθ3=1\frac{x\cos\theta}{2} + \frac{y\sin\theta}{\sqrt{3}} = 1. The x-intercept (when y=0y=0) is A=2cosθA = \frac{2}{\cos\theta}. The y-intercept (when x=0x=0) is B=3sinθB = \frac{\sqrt{3}}{\sin\theta}. The length LL of the intercepted portion is A2+B2=4cos2θ+3sin2θ\sqrt{A^2+B^2} = \sqrt{\frac{4}{\cos^2\theta} + \frac{3}{\sin^2\theta}}. To minimize LL, we minimize L2=4cos2θ+3sin2θL^2 = \frac{4}{\cos^2\theta} + \frac{3}{\sin^2\theta}. Let u=cos2θu = \cos^2\theta. L2=4u+31uL^2 = \frac{4}{u} + \frac{3}{1-u}. The minimum value of L2L^2 is (4+3)2=(2+3)2(\sqrt{4} + \sqrt{3})^2 = (2+\sqrt{3})^2 when 4u=31u\frac{4}{u} = \frac{3}{1-u}, which yields u=47u=\frac{4}{7}. The minimum length L=(2+3)2=2+3L = \sqrt{(2+\sqrt{3})^2} = 2+\sqrt{3}. This matches with option (2).

(S) If foot of normal from P on major axis is P' and normal at P cuts transverse axis at N, then CNCP\frac{CN}{CP'} is Let P(x0,y0)=(acosθ,bsinθ)P(x_0, y_0) = (a\cos\theta, b\sin\theta). The foot of the perpendicular from P to the major axis is P=(x0,0)P'=(x_0, 0). So, P=(2cosθ,0)P'=(2\cos\theta, 0). CP=2cosθCP' = |2\cos\theta|. The equation of the normal at P(x0,y0)P(x_0, y_0) is axcosθbysinθ=a2b2\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2-b^2. The normal cuts the transverse axis (x-axis) at N. Setting y=0y=0: axNcosθ=a2b2    xN=(a2b2)cosθa\frac{ax_N}{\cos\theta} = a^2-b^2 \implies x_N = \frac{(a^2-b^2)\cos\theta}{a}. a=2,b=3,a2=4,b2=3a=2, b=\sqrt{3}, a^2=4, b^2=3. xN=(43)cosθ2=12cosθx_N = \frac{(4-3)\cos\theta}{2} = \frac{1}{2}\cos\theta. So N=(12cosθ,0)N = (\frac{1}{2}\cos\theta, 0). CN=12cosθCN = |\frac{1}{2}\cos\theta|. Then CNCP=12cosθ2cosθ=1/22=14\frac{CN}{CP'} = \frac{|\frac{1}{2}\cos\theta|}{|2\cos\theta|} = \frac{1/2}{2} = \frac{1}{4}. This matches with option (4).

The correct matches are P-3, Q-1, R-2, S-4.