Solveeit Logo

Question

Mathematical Physics Question on Volume integrals

Consider a volume integral
I=V2(1r)dvI=\int_V\nabla^2(\frac{1}{r})dv
over a volume VV, where r=x2+y2+z2r = \sqrt{x^2 + y^2 + z^2}. Which of the following statements is/are correct?

A

The integrand vanishes for r0r \neq 0.

B

The integrand vanishes for r0r \neq 0.

C

I=0I = 0, if r=0r = 0 is not inside the volume VV.

D

The integrand diverges as rr \rightarrow \infty.

Answer

The integrand vanishes for r0r \neq 0.

Explanation

Solution

The correct options are (A) :I=4πI = -4\pi, if r=0r = 0 is inside the volume VV.(B):The integrand vanishes for r0r \neq 0.(C):I=0I = 0, if r=0r = 0 is not inside the volume VV.