Solveeit Logo

Question

Mathematics Question on Some Applications of Trigonometry

Consider a triangle PQRP Q R having sides of lengths p,qp, q and rr opposite to the angles P,QP, Q and RR, respectively. Then which of the following statements is(are) TRUE?

A

cosP1p22qr\cos P \geq 1-\frac{ p ^{2}}{2 qr }

B

cosR(qrp+q)cosP+(prp+q)cosQ\cos R \geq\left(\frac{q-r}{p+q}\right) \cos P+\left(\frac{p-r}{p+q}\right) \cos Q

C

q+rp<2sinQsinRsinP\frac{q+r}{p} < 2 \frac{\sqrt{\sin Q \sin R}}{\sin P}

D

If p<qp < q and p<rp < r, then cosQ>pr\cos Q >\frac{ p }{ r } and cosR>pq\cos R >\frac{ p }{ q }

Answer

cosP1p22qr\cos P \geq 1-\frac{ p ^{2}}{2 qr }

Explanation

Solution

(A) cosP=q2+r2p22qr\cos P = \frac{{q^2 + r^2 - p^2}}{{2qr}}

And q2+r22q2r2(AMGM)\frac{{q^2 + r^2}}{2} \geq \sqrt{q^2 \cdot r^2} \quad \text{(AM} \geq \text{GM)}

q2+r22qrq^2 + r^2 \geq 2qr

So cosP2qrp22qr\cos P \geq \frac{{2qr - p^2}}{{2qr}}

cosP1p22qr\cos P \geq 1 - \frac{{p^2}}{{2qr}}

(B) (qr)cosP+(pr)cosQp+q=(qcosP+pcosQ)r(cosP+cosQ)p+q\frac{{(q-r) \cos P + (p-r) \cos Q}}{{p+q}} = \frac{{(q \cos P + p \cos Q) - r(\cos P + \cos Q)}}{{p+q}}

=r(1cosPcosQ)p+q\frac{r(1 - \cos P - \cos Q)}{p+q}

=r(qpcosR)(pqcosR)p+q\frac{{r(q-p \cos R) - (p-q \cos R)}}{{p+q}}

= (rpq)+(p+q)cosRp+q\frac{{(r-p-q) + (p+q)\cos R}}{{p+q}}

= cosR+rqpp+qcosR\cos R + \frac{{r-q-p}}{{p+q}} \leq \cos R

(C) q+rp=sinQ+sinRsinP2sinQsinRsinP\frac{{q+r}}{p} = \frac{{\sin Q + \sin R}}{{\sin P}} \geq 2\sqrt{\frac{{\sin Q \sin R}}{{\sin P}}}

(D) If p<qandq<rp < q \quad \text{and} \quad q < r

So, p is the smallest side, therefore one of Q or R can be obtuse

So, one of cos Q or cos R can be negative

Therefore, cosQ>prandcosR>pq cannot hold always.\cos Q > \frac{p}{r} \quad \text{and} \quad \cos R > \frac{p}{q} \text{ cannot hold always.}