Question
Mathematics Question on Some Applications of Trigonometry
Consider a triangle PQR having sides of lengths p,q and r opposite to the angles P,Q and R, respectively. Then which of the following statements is(are) TRUE?
A
cosP≥1−2qrp2
B
cosR≥(p+qq−r)cosP+(p+qp−r)cosQ
C
pq+r<2sinPsinQsinR
D
If p<q and p<r, then cosQ>rp and cosR>qp
Answer
cosP≥1−2qrp2
Explanation
Solution
(A) cosP=2qrq2+r2−p2
And 2q2+r2≥q2⋅r2(AM≥GM)
⇒ q2+r2≥2qr
So cosP≥2qr2qr−p2
cosP≥1−2qrp2
(B) p+q(q−r)cosP+(p−r)cosQ=p+q(qcosP+pcosQ)−r(cosP+cosQ)
=p+qr(1−cosP−cosQ)
=p+qr(q−pcosR)−(p−qcosR)
= p+q(r−p−q)+(p+q)cosR
= cosR+p+qr−q−p≤cosR
(C) pq+r=sinPsinQ+sinR≥2sinPsinQsinR
(D) If p<qandq<r
So, p is the smallest side, therefore one of Q or R can be obtuse
So, one of cos Q or cos R can be negative
Therefore, cosQ>rpandcosR>qp cannot hold always.