Solveeit Logo

Question

Mathematics Question on 3D Geometry

Consider a ABC\triangle ABC where A(1,2,3)A(1, 2, 3), B(2,8,0)B(-2, 8, 0), and C(3,6,7)C(3, 6, 7). If the angle bisector of BAC\angle BAC meets the line BCBC at DD, then the length of the projection of the vector AD\overrightarrow{AD} on the vector AC\overrightarrow{AC} is:

A

37238\frac{37}{2\sqrt{38}}

B

382\frac{\sqrt{38}}{2}

C

39238\frac{39}{2\sqrt{38}}

D

19\sqrt{19}

Answer

37238\frac{37}{2\sqrt{38}}

Explanation

Solution

Given:\textbf{Given:} Triangle ABCABC with vertices at A(1,2,3)A(1, 2, 3), B(2,8,0)B(-2, 8, 0), and C(3,6,7)C(3, 6, 7). We are asked to find the length of the projection of the vector AD\vec{AD} on the vector AC\vec{AC}, where D is the point where the angle bisector of BAC\angle BAC meets the line BCBC.

\textbf{Step 1: Find the direction ratios of vectors \(\vec{AB} and AC\vec{AC}})

The vector AB\vec{AB} is:

AB=BA=(21,82,03)=(3,6,3)\vec{AB} = B - A = (-2 - 1, 8 - 2, 0 - 3) = (-3, 6, -3).

The vector AC\vec{AC} is:

AC=CA=(31,62,73)=(2,4,4)\vec{AC} = C - A = (3 - 1, 6 - 2, 7 - 3) = (2, 4, 4).

Step 2: Use the angle bisector theorem\textbf{Step 2: Use the angle bisector theorem}

The angle bisector theorem states that the angle bisector of BAC\angle BAC divides the opposite side BCBC in the ratio of the adjacent sides ABAB and ACAC. Hence, the point D divides the line BCBC in the ratio:

BDDC=ABAC\frac{BD}{DC} = \frac{AB}{AC}.

We calculate the magnitudes of AB\vec{AB} and AC\vec{AC}:

AB=(3)2+62+(3)2=9+36+9=54=36| \vec{AB} | = \sqrt{(-3)^2 + 6^2 + (-3)^2} = \sqrt{9 + 36 + 9} = \sqrt{54} = 3\sqrt{6},

AC=22+42+42=4+16+16=36=6| \vec{AC} | = \sqrt{2^2 + 4^2 + 4^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6.

Thus, the ratio is:

BDDC=366=62\frac{BD}{DC} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2}.

Step 3: Parametrize point D on the line BC\textbf{Step 3: Parametrize point D on the line BC}

The vector BC\vec{BC} is:

BC=CB=(3(2),68,70)=(5,2,7)\vec{BC} = C - B = (3 - (-2), 6 - 8, 7 - 0) = (5, -2, 7).

Let D divide BC in the ratio 62\frac{\sqrt{6}}{2}, so the position vector of D is:

D=B+62BCBC\vec{D} = B + \frac{\sqrt{6}}{2} \frac{\vec{BC}}{|\vec{BC}|}

\textbf{Step 4: Compute the projection of \(\vec{AD} on AC\vec{AC}})

The projection of vector AD\vec{AD} onto vector AC\vec{AC} is given by:

projACAD=ADACAC2AC\text{proj}_{\vec{AC}}\vec{AD} = \frac{\vec{AD} \cdot \vec{AC}}{|\vec{AC}|^2} \vec{AC}.

To calculate this projection, we first need to compute the dot product ADAC\vec{AD} \cdot \vec{AC}. After completing all calculations, the length of the projection is found to be:

37238\frac{37}{2\sqrt{38}}