Solveeit Logo

Question

Question: Consider a toroid of circular cross-section of radius b, major radius R much greater than minor radi...

Consider a toroid of circular cross-section of radius b, major radius R much greater than minor radius b, (see diagram) find the total energy stored in magnetic field of toroid–

A

B

C

B2π2b2R8μ0\frac { B ^ { 2 } \pi ^ { 2 } b ^ { 2 } R } { 8 \mu _ { 0 } }

D

B2π2b2Rμ0\frac { B ^ { 2 } \pi ^ { 2 } b ^ { 2 } R } { \mu _ { 0 } }

Answer

B2π2b2Rμ0\frac { B ^ { 2 } \pi ^ { 2 } b ^ { 2 } R } { \mu _ { 0 } }

Explanation

Solution

B = μ0Ni2R\frac { \mu _ { 0 } \mathrm { Ni } } { 2 \mathrm { R } } f = pb2 × B × N

f = Li L = ϕi\frac { \phi } { \mathrm { i } } = μ0 N2 b22R\frac { \mu _ { 0 } \mathrm {~N} ^ { 2 } \mathrm {~b} ^ { 2 } } { 2 \mathrm { R } } , with b <<< R

Energy = 12\frac { 1 } { 2 }Li2 = μ0 N2i24R\frac { \mu _ { 0 } \mathrm {~N} ^ { 2 } \mathrm { i } ^ { 2 } } { 4 \mathrm { R } } b2