Solveeit Logo

Question

Question: Consider a tetrahedron Die that has four integers 1, 2, 3 and 4 written on its faces. Roll the Die 2...

Consider a tetrahedron Die that has four integers 1, 2, 3 and 4 written on its faces. Roll the Die 2000 times and for each i, 1i41 \leq i \leq 4 let f(i)f(i) represent the number of times ii is written on the bottom face.

Let AA denote total sum of the numbers on the bottom face for these 2000 rolls, if A4=6144f(1)f(2)f(3)f(4)A^4 = 6144f(1)f(2)f(3)f(4), then

The value of f(1)f(2)f(4)\left| \frac{f(1)-f(2)}{f(4)} \right| is equal to

Answer

2

Explanation

Solution

The problem involves a tetrahedral die with faces labeled 1, 2, 3, 4. The die is rolled 2000 times. Let f(i)f(i) be the number of times face ii lands on the bottom. The total number of rolls is N=i=14f(i)=2000N = \sum_{i=1}^4 f(i) = 2000.

The total sum of the numbers on the bottom face for these 2000 rolls is A=1f(1)+2f(2)+3f(3)+4f(4)A = 1 \cdot f(1) + 2 \cdot f(2) + 3 \cdot f(3) + 4 \cdot f(4).

We are given the condition A4=6144f(1)f(2)f(3)f(4)A^4 = 6144f(1)f(2)f(3)f(4).

Let pip_i be the experimental probability of face ii landing on the bottom, so pi=f(i)/Np_i = f(i)/N. Then f(i)=Npif(i) = N p_i. Substituting these into the given equation: A=i=14iNpi=Ni=14ipiA = \sum_{i=1}^4 i \cdot N p_i = N \sum_{i=1}^4 i p_i. Let S=i=14ipi=p1+2p2+3p3+4p4S = \sum_{i=1}^4 i p_i = p_1 + 2p_2 + 3p_3 + 4p_4. So, A=NSA = N S.

The given equation becomes: (NS)4=6144(Np1)(Np2)(Np3)(Np4)(NS)^4 = 6144 (N p_1)(N p_2)(N p_3)(N p_4) N4S4=6144N4p1p2p3p4N^4 S^4 = 6144 N^4 p_1 p_2 p_3 p_4 S4=6144p1p2p3p4S^4 = 6144 p_1 p_2 p_3 p_4.

Consider the terms x1=p1x_1 = p_1, x2=2p2x_2 = 2p_2, x3=3p3x_3 = 3p_3, x4=4p4x_4 = 4p_4. The sum of these terms is S=x1+x2+x3+x4S = x_1+x_2+x_3+x_4. The product of these terms is P=x1x2x3x4=p1(2p2)(3p3)(4p4)=24p1p2p3p4P = x_1 x_2 x_3 x_4 = p_1 (2p_2) (3p_3) (4p_4) = 24 p_1 p_2 p_3 p_4.

By the AM-GM inequality, for non-negative numbers x1,x2,x3,x4x_1, x_2, x_3, x_4: x1+x2+x3+x44x1x2x3x44\frac{x_1+x_2+x_3+x_4}{4} \ge \sqrt[4]{x_1 x_2 x_3 x_4} S4(24p1p2p3p4)1/4\frac{S}{4} \ge (24 p_1 p_2 p_3 p_4)^{1/4} Raising both sides to the power of 4: (S4)424p1p2p3p4(\frac{S}{4})^4 \ge 24 p_1 p_2 p_3 p_4 S425624p1p2p3p4\frac{S^4}{256} \ge 24 p_1 p_2 p_3 p_4 S4256×24p1p2p3p4S^4 \ge 256 \times 24 p_1 p_2 p_3 p_4 S46144p1p2p3p4S^4 \ge 6144 p_1 p_2 p_3 p_4.

The given condition is S4=6144p1p2p3p4S^4 = 6144 p_1 p_2 p_3 p_4. This means that the equality condition for the AM-GM inequality must hold. The equality in AM-GM holds if and only if all the terms are equal: x1=x2=x3=x4x_1 = x_2 = x_3 = x_4 So, p1=2p2=3p3=4p4p_1 = 2p_2 = 3p_3 = 4p_4.

Let this common value be kk. p1=kp_1 = k p2=k/2p_2 = k/2 p3=k/3p_3 = k/3 p4=k/4p_4 = k/4

We know that the sum of probabilities must be 1: p1+p2+p3+p4=1p_1 + p_2 + p_3 + p_4 = 1 k+k/2+k/3+k/4=1k + k/2 + k/3 + k/4 = 1 k(1+12+13+14)=1k \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) = 1 k(12+6+4+312)=1k \left(\frac{12+6+4+3}{12}\right) = 1 k(2512)=1k \left(\frac{25}{12}\right) = 1 k=1225k = \frac{12}{25}.

Now we can find the individual probabilities: p1=1225p_1 = \frac{12}{25} p2=12/252=625p_2 = \frac{12/25}{2} = \frac{6}{25} p3=12/253=425p_3 = \frac{12/25}{3} = \frac{4}{25} p4=12/254=325p_4 = \frac{12/25}{4} = \frac{3}{25}

The frequencies f(i)f(i) are NpiN p_i, where N=2000N=2000: f(1)=2000×1225=80×12=960f(1) = 2000 \times \frac{12}{25} = 80 \times 12 = 960 f(2)=2000×625=80×6=480f(2) = 2000 \times \frac{6}{25} = 80 \times 6 = 480 f(3)=2000×425=80×4=320f(3) = 2000 \times \frac{4}{25} = 80 \times 4 = 320 f(4)=2000×325=80×3=240f(4) = 2000 \times \frac{3}{25} = 80 \times 3 = 240

We need to find the value of f(1)f(2)f(4)\left| \frac{f(1)-f(2)}{f(4)} \right|. f(1)f(2)=960480=480f(1)-f(2) = 960 - 480 = 480. f(4)=240f(4) = 240. f(1)f(2)f(4)=480240=2=2\left| \frac{f(1)-f(2)}{f(4)} \right| = \left| \frac{480}{240} \right| = |2| = 2.

The final answer is 2\boxed{2}.