Solveeit Logo

Question

Fluid Mechanics and Mechanical Operations Question on Elementary boundary layer theory

Consider a steady, fully-developed, uni-directional laminar flow of an incompressible Newtonian fluid (viscosity μ\mu) between two infinitely long horizontal plates separated by a distance 2H2H as shown in the figure. The flow is driven by the combined action of a pressure gradient and the motion of the bottom plate at y=Hy = -H in the negative xx direction. Given that ΔP/L=(P1P2)/L>0\Delta P/L = (P_1 - P_2)/L > 0, where P1P_1 and P2P_2 are the pressures at two xx locations separated by a distance LL. The bottom plate has a velocity of magnitude VV with respect to the stationary top plate at y=Hy = H. Which one of the following represents the xx-component of the fluid velocity vector?
fully-developed, uni-directional laminar flow of an incompressible Newtonian fluid

A

ΔPH2L2μ(1y2H2)+V2(yH1)\frac{\Delta{P} H^2}{L 2\mu} \left( 1 - \frac{y^2}{H^2} \right) + \frac{V}{2} \left( \frac{y}{H} - 1 \right)

B

ΔPH2L2μ(y2H21)+V2(yH1)\frac{\Delta{P} H^2}{L 2\mu} \left( \frac{y^2}{H^2} - 1 \right) + \frac{V}{2} \left( \frac{y}{H} - 1 \right)

C

ΔPH2L2μ(y2H21)V2(yH1)\frac{\Delta{P} H^2}{L 2\mu} \left( \frac{y^2}{H^2} - 1 \right) - \frac{V}{2} \left( \frac{y}{H} - 1 \right)

D

ΔPH2L2μ(1y2H2)V2(yH1)\frac{\Delta{P} H^2}{L 2\mu} \left( 1 - \frac{y^2}{H^2} \right) - \frac{V}{2} \left( \frac{y}{H} - 1 \right)

Answer

ΔPH2L2μ(1y2H2)+V2(yH1)\frac{\Delta{P} H^2}{L 2\mu} \left( 1 - \frac{y^2}{H^2} \right) + \frac{V}{2} \left( \frac{y}{H} - 1 \right)

Explanation

Solution

The correct option is (A):ΔPH2L2μ(1y2H2)+V2(yH1)\frac{\Delta{P} H^2}{L 2\mu} \left( 1 - \frac{y^2}{H^2} \right) + \frac{V}{2} \left( \frac{y}{H} - 1 \right)