Solveeit Logo

Question

Physics Question on Thermodynamics

Consider a spherical shell of radius RR at temperature TT. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume u=UV?T4u=\frac{U}{V} ? T^4 and pressure p=13(UV)p=\frac{1}{3}\bigg(\frac{U}{V}\bigg) If the shell now undergoes an adiabatic expansion, the relation between TT and RR is

A

T?eRT ? e^{-R}

B

T?1RT ? \frac{1}{R}

C

T?e3RT ? e^{-3R}

D

T?1R3T ? \frac{1}{R^3}

Answer

T?1RT ? \frac{1}{R}

Explanation

Solution

u=UVT4u =\frac{ U }{ V } \propto T ^{4}
P=13(UV)P =\frac{1}{3}\left(\frac{ U }{ V }\right)
Adiabatic expansion
TVγ1=KTV ^{\gamma-1}= K
TVγ4=CTV ^{\frac{\gamma}{4}}= C
γ1=γ4\gamma-1=\frac{\gamma}{4}
3γ4=1\frac{3 \gamma}{4}=1
γ=43\gamma=\frac{4}{3}
TVγ4=CTV ^{\frac{\gamma}{4}}= C
TV13=CT V ^{\frac{1}{3}}= C
T(43πR3)13=CT\left(\frac{4}{3} \pi R^{3}\right)^{\frac{1}{3}}=C
T1RT \propto \frac{1}{ R }