Solveeit Logo

Question

Physics Question on Electric charges and fields

Consider a sphere of radius RR which carries a uniform charge density ρ\rho. If a sphere of radius R2\frac{R}{2} Ls carved out of it, as shown, the ratio EAEB\frac{\left|\overrightarrow{E_{A}}\right|}{\left|\overrightarrow{E_{B}}\right|} of magnitude of electric field EA\overrightarrow{E_{A}} and EB\overrightarrow{E}_{B} respectively, at points A and B due to the remaining portion is :

A

2134\frac{21}{34}

B

1854\frac{18}{54}

C

1754\frac{17}{54}

D

1834\frac{18}{34}

Answer

1834\frac{18}{34}

Explanation

Solution

Fill the empty space with +ρ+\rho and ρ-\rho charge density.
EA=0+kρ.43π(R2)3(R2)2=kρ43π(R2)\left|E_{A}\right|=0+\frac{k\rho. \frac{4}{3}\pi\left(\frac{R}{2}\right)^{3}}{\left(\frac{R}{2}\right)^{2}}=k\rho \frac{4}{3}\pi\left(\frac{R}{2}\right)
EB=kρ.43πR3R2kρ.43π(R2)3(3R2)2\left|E_{B}\right|=\frac{k\rho. \frac{4}{3}\pi R^{3}}{R^{2}}-\frac{k\rho. \frac{4}{3}\pi\left(\frac{R}{2}\right)^{3}}{\left(\frac{3R}{2}\right)^{2}}
=kρ43πRkρ43πR18=kρ.43π(17R18)=k\rho \frac{4}{3}\pi R-k\rho \frac{4}{3}\pi \frac{R}{18}=k\rho. \frac{4}{3}\pi\left(\frac{17R}{18}\right)
EAEB=917=1834\frac{E_{A}}{E_{B}}=\frac{9}{17}=\frac{18}{34}