Solveeit Logo

Question

Question: Consider a quadratic equation az<sup>2</sup> + bz + c = 0, where a, b, c are complex numbers. The co...

Consider a quadratic equation az2 + bz + c = 0, where a, b, c are complex numbers. The condition that the equation has one purely imaginary root is –

A

(bcˉ+cbˉ)(abˉ+aˉb)+(caˉacˉ)2=0(b\bar{c} + c\bar{b})(a\bar{b} + \bar{a}b) + (c\bar{a} - a\bar{c})^{2} = 0

B

(bcˉ+cbˉ)(caˉ+abˉ)+(abˉaˉb)2=0(b\bar{c} + c\bar{b})(c\bar{a} + a\bar{b}) + (a\bar{b} - \bar{a}b)^{2} = 0

C

(abˉ+aˉb)(caˉ+cˉa)+(bcˉbˉc)2=0(a\bar{b} + \bar{a}b)(c\bar{a} + \bar{c}a) + (b\bar{c} - \bar{b}c)^{2} = 0

D

None of these

Answer

(bcˉ+cbˉ)(abˉ+aˉb)+(caˉacˉ)2=0(b\bar{c} + c\bar{b})(a\bar{b} + \bar{a}b) + (c\bar{a} - a\bar{c})^{2} = 0

Explanation

Solution

Sol. Let a (purely imaginary) be a root of the given equation then a = –αˉ\bar{\alpha}.

Also a a2 + ba + c = 0 … (1)

From (1), aα2+bα+c=0ˉ\overline{a\alpha^{2} + b\alpha + c} = \bar{0}

Ž aˉαˉ2+bˉαˉ+cˉ=0\bar{a}{\bar{\alpha}}^{2} + \bar{b}\bar{\alpha} + \bar{c} = 0Žaˉα2bˉα+cˉ=0\bar{a}\alpha^{2}–\bar{b}\alpha + \bar{c} = 0… (2)

[Q z = –zˉ\bar{z}]

Solving (1) and (2) simultaneously, we get α2bcˉ+cbˉ\frac{\alpha^{2}}{b\bar{c} + c\bar{b}}=αcaˉacˉ\frac{\alpha}{c\bar{a}–a\bar{c}}=1abˉaˉb\frac{1}{- a\bar{b} - \bar{a}b}

Eliminating a, we get(bcˉ+cbˉ)(abˉ+aˉb)+(caˉacˉ)2=0(b\bar{c} + c\bar{b})(a\bar{b} + \bar{a}b) + (c\bar{a} - a\bar{c})^{2} = 0