Solveeit Logo

Question

Question: Consider a particle of mass m on the axis of a ring of mass M & radius r, at a distance r from the c...

Consider a particle of mass m on the axis of a ring of mass M & radius r, at a distance r from the centre of ring, this particle moving under the gravitational attraction of the ring, reaches the centre of the ring. The velocity of the particle at the centre of the ring will be –

A

B

C

2GMr(2+1)\sqrt { \frac { 2 \mathrm { GM } } { \mathrm { r } ( \sqrt { 2 } + 1 ) } }

D

2GMr(112)\sqrt { \frac { 2 \mathrm { GM } } { \mathrm { r } } \left( 1 - \frac { 1 } { \sqrt { 2 } } \right) }

Answer

2GMr(112)\sqrt { \frac { 2 \mathrm { GM } } { \mathrm { r } } \left( 1 - \frac { 1 } { \sqrt { 2 } } \right) }

Explanation

Solution

Gravitational P.E. = GMmR2+x2- \frac { \mathrm { GMm } } { \sqrt { \mathrm { R } ^ { 2 } + \mathrm { x } ^ { 2 } } }

(T.E.)A = (T.E.)B

Let velocity at B is V so

K.E. + P.E. = constant

0 + = 12\frac { 1 } { 2 } mv2 +

v = 2GMr(112)\sqrt { \frac { 2 \mathrm { GM } } { \mathrm { r } } \left( 1 - \frac { 1 } { \sqrt { 2 } } \right) }