Solveeit Logo

Question

Question: Consider a particle of mass m having linear momentum at position relative to the origin O. Let \(\ov...

Consider a particle of mass m having linear momentum at position relative to the origin O. Let L\overrightarrow{L}be the angular momentum of the particle with respect to the origin. Which of the following equations correctly relates (s) r,p\overrightarrow{r},\overrightarrow{p} and L\overrightarrow{L}?

A

dLdt+r×dpdt=0\frac{d\overrightarrow{L}}{dt} + \overrightarrow{r} \times \frac{d\overrightarrow{p}}{dt} = 0

B

dLdt+dpdt×p=0\frac{d\overrightarrow{L}}{dt} + \frac{d\overrightarrow{p}}{dt} \times \overrightarrow{p} = 0

C

dLdt+drdt×p=0\frac{d\overrightarrow{L}}{dt} + \frac{d\overrightarrow{r}}{dt} \times \overrightarrow{p} = 0

D

dLdtr×dpdt=0\frac{d\overrightarrow{L}}{dt} - \overrightarrow{r} \times \frac{d\overrightarrow{p}}{dt} = 0

Answer

dLdtr×dpdt=0\frac{d\overrightarrow{L}}{dt} - \overrightarrow{r} \times \frac{d\overrightarrow{p}}{dt} = 0

Explanation

Solution

As L=r×p\overset{\rightarrow}{L} = \overset{\rightarrow}{r} \times \overset{\rightarrow}{p}

Differentiate both sides with respect to time, we get

dLdt=ddt(r×p)\frac{d\overset{\rightarrow}{L}}{dt} = \frac{d}{dt}\left( \overset{\rightarrow}{r} \times \overset{\rightarrow}{p} \right)

=drdt×p+r×dpdt= \frac{d\overrightarrow{r}}{dt} \times \overrightarrow{p} + \overrightarrow{r} \times \frac{d\overset{\rightarrow}{p}}{dt}

=r×dpdt(drdt×p=0)= \overrightarrow{r} \times \frac{d\overset{\rightarrow}{p}}{dt}\left( \therefore\frac{d\overset{\rightarrow}{r}}{dt} \times \overset{\rightarrow}{p} = 0 \right)

dLdtr×dpdt=0\frac{d\overset{\rightarrow}{L}}{dt} - \overset{\rightarrow}{r} \times \frac{d\overset{\rightarrow}{p}}{dt} = 0